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Abstract We study approaches for obtaining convex relaxations dialoptimization problems containing multilin-
ear functions. Specifically, we compare the concave andeoervelopes of these functions with the relaxations that
are obtained with a standard relaxation approach, due todvuoick. The standard approach reformulates the prob-
lem to contain only bilinear terms and then relaxes each ted®pendently. We show that for a multilinear function
having a single product term, this approach yields the comawel concave envelopes if the bounds on all variables
are symmetric around zero. We then review and extend sorméges conditions when the concave envelope of a
multilinear function can be written as a sum of concave apes of its individual terms. Finally, for bilinear functie

we prove that the difference between the concave upper lmyiadd convex lower bounding functions obtained from
the McCormick relaxation approach is always within a comistd the difference between the concave and convex en-
velopes. These results, along with numerical examples exgg®, give insight into how to construct strong relaxasion
of multilinear functions.

Keywords Global optimization Bilinear function- Multilinear function

1 Introduction

The construction of convex lower bounding and concave uppending functions for nonconvex functions plays a
critical role in algorithms for globally solving nonconveptimization problems. In this work, we focus on multilimea

functions¢ : [¢,u] — R, where
d@)=> ar [] =5 (1)
teT  jEJ;
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and[¢,u] = {z € R" | £ < z < u}. Specifically, we are interested in comparing the strenfthlaxations of the graph
of such a function, given by the set

X © (2, 2) € [6,u] x R| 2 = p(x)}.

An important special case is wheris abilinear function, i.e.,|J;| < 2forallt € T'.

When ¢(z) consists of a single bilinear term, McCormick [14] proposedelax the seB = {(z1,z2,2) €
[01,u1] X [€2,u2] x R | z = z122} with the following inequalities, which we refer to as the Mm@ick inequalities:

z > ugwy +u1zre —uiue, z > fowy +Liwo — £1lo, (2a)

z <wuoxy + L1xe — l1ug, z < lox1 +uire — urls. (2b)

Al-Khayyal and Falk [1] showed that the convex hull Bfis described by (2). For more general factorable noncon-
vex functions, including multilinear functions of the forfh), McCormick proposed a recursive procedure in which
additional variables and constraints are added to obtagmraulation of the problem having only bilinear equations
which are subsequently relaxed using (2). The resultirgxegion, which we refer to as thdcCormick relaxation
has formed a basis for the relaxations used in many globahgggattion solution approaches, such as implemented in
BARON [21,24], Couenne [3], and [23].

The strongest possible relaxation &f its convex hullconv(X), has been shown to be a polyhedron with the
following characterization [6-8, 19, 22]:

on on

conv(X) = Proj {(x,z, A) €lul xRx Agn |z = Zijj7Z = Z /\j¢(;pj)}, 3)

.2 j=1 j=1

wherez!, 22, ... 2" are the vertices of¢, u], and Agn is the 2"-dimensional simplex. In general, the McCormick

relaxation may strictly contain the convex hull, leadingnteaker relaxation bounds. On the other hand, direct use
of the convex hull characterization (3) to create a convéxagion of X is limited by the exponential growth in the
number of variables. Thus, a natural idea is to seek relaxathf X that may be tighter than what is obtained with the
standard McCormick approach, but which are not as prowditilarge as the full convex hull approach. A simple idea
along these lines is to use the formulation (3) cstnsetof the variables chosen small enough to keep the size of the
relaxation tractable. This idea has already been exploitdpromising results by Bao, Sahinidis, and Tawarmalani
[2], where procedures to find valid inequalities based ordtred formulation of (3) are investigated. We also refer the
reader to the Ph.D. thesis of the second author [17] for a met@led exposition of some of the results presented in
this paper.

Since using (3) in any form is likely to increase the compatel burden in solving the relaxation, it is important to
understand when this extra work is most likely to yield sfigaint benefits in relaxation quality. To this end, we explore
conditions under which the convex hull formulation yieldstling more than McCormick relaxation approach, and,
for the case of bilinear functions, we provide bounds on havelmworse the McCormick relaxation can be. To our
knowledge, this is the first result of this type in the globgtimization literature.

We begin in§2 with the case in whiclp consists of single product ter(Z’| = 1). We first review a result of
Ryoo and Sahinidis [20] that shows the McCormick relaxatsoequivalent to the convex hull when the bounds on the
variables are all0, 1]. We then provide the new result that this also holds when thumtts are symmetric about zero,
i.e.,z; € [—u;,u;]. Finally, we provide examples that when these conditionaatdhold, the difference between the
convex hull and McCormick relaxations can be arbitrarilgta

In §3, we consider the case whencan have multiple terms. We begin §8.1 by reviewing an existing result
of Meyer and Floudas [15] which states that ttmmcaveenvelope ofp overz € [0,1]™ can be obtained as the sum



bilinear -- positive signs -- [0,1] bilinear -- mixed signs -- [0,1]

Convex hull difference
Convex hull difference

0 1 5 6 0 1 5 6

2 3 4 2 3 4
McCormick difference McCormick difference

Fig. 1 Scatter plots of McCormick gap vs. convex hull gap for randaimis in [0, 1]7 for a bilinear function having positive coefficients
(left) and mixed-sign coefficients (right).

of concave envelopes of the individual termsgofvhen the coefficients on each term are positive. We show hiigt t
result extends ta: € [¢,u] provided? € R, and to generdl, u] if ¢ is bilinear. Note that these results do not say
anything about how theonvex lower bounding functioobtained from the McCormick relaxation compares to the
convex envelope.

In §3.2 we focus on bilinear functions of the fortt) = ¢, .1 g aijziz;, whereE is a set of unordered pairs
of distinct elements oV = {1,...,n}, and obtain results that provide insight into the strendtthe McCormick
upperandlower bounding functions, relative to the concave and coeverelopes. To motivate these results, consider
an experiment comparing the McCormick relaxation to thevegmull for the following two bilinear functions defined
onz e H=1[0,1]":

b1(z) =x1x2 + x123 + T1T4 + T1T5 + T1T6 + T2T3 + T2T4 + T2T5 + T3T4
+ 2325 + T4T5 + T4Te + T5x7 + TeT7,
ba(z) =x122 — 123 + T1T4 + 2105 + T1T6 + T2XT3 — TaTg — ToTs + TIT4

+ 23T5 — 475 + T4x6 — T5T7 + TeT7.

For each of these functions, we randomly generated 500Qspaimiformly in # and, for each point*, calcu-
lated the difference between the concave and convex erelofb at ¥, denotedchgap [b](<*), and also calcu-
lated the difference between the upper and lower boundgadf) defined by the McCormick relaxation, denoted
mcgapy [b](z"). (These terms are formally defined §8.2.) We then construct a scatter plot, showin in Fugre 1, of
the points(mcgap ;[b](z"), chgap[b](z*)), k = 1,...,5000. Because the McCormick relaxation is weaker than the
convex hull, it always holds thatcgap [b](z) > chgapg[b](z) and so all of these points lie below the line of slope
one passing through the origin. The distance of the poiots this line provides a graphical illustration of the qual-
ity of the McCormick relaxation at each point. A surprisirgafure of these plots is that all points lie above a line
having smaller slope, suggesting that there exists a awinS{a> 1, depending on the bilinear functidn such that
mcgap g [b](z)/ chgapg[b](z) < Cy holds for allz € H. In §3.2, we prove that this is indeed the case, and furthermore
we provide bounds on the approximation const@ptlf a;; > 0 for all {i, j} € FE, this constant is always less than
2, and decreases with the coloring number of the gi@ph (N, E). This yields, as a special case, the result of [5,9]
that the McCormick relaxation is equivalent to the convel twhen G is bipartite. When the coefficients are not all
positive, our bound o}, is O(n). We also show that for any bilinear function, as terms areorexd the difference
between the convex hull and McCormick relaxation gaps dsa® suggesting that the improvement in relaxation
quality by using the convex hull formulation will be more sificant when the grapty is denser.

In §4 we present numerical examples that show our results duie éigd also provide insights into the gap between
these relaxations for cases where our results do not apglynske some concluding remarkssh



Notation: Given a functionf : D — R, the concave envelope ¢fover D, writtencavp[f], is the minimum concave
upper bounding function of on D. That is,cavp[f](z) > f(z) forallz € D, and ifg : D — R is any other concave
function withg > f on D, theng > cavp|[f]. Similarly, the convex envelope gf over D, written vexp[f], is the
maximum convex lower bounding function ¢fon D. We let0 and1 denote vectors of all zeros and all ones, and
e; be a vector of all zeros except th component which has value The lengths ob,1, ande; will be clear from
context (but are usually afll). We letH = [0, 1] be the unit hypercube. Farc R", we defineDiag(u) to be then x n
diagonal matrix witiDiag(u);; = u;.

2 Recursive McCormick relaxation of a single multilinear term

n

In this section, we consider a multilinear function consgtof a single termf(z) = J[;_,

compare relaxations of set

z;. Specifically, we

X[Z,u] ={(z,y1) € [l,u] xR |y1 = f(z)}.

We consider cases in whichracursive McCormick relaxatigrconstructed by recursively applying the McCormick
relaxation to products of pairs of variables, is as strongag(X).

2.1 Preliminaries

We first formally define the recursive McCormick relaxatidritee setX|, ,;. This relaxation is referred to asecur-
sive Arithmetic Intervain [20]. First, for fixed intervalgéy, u1] and[lz, uo], define the seMCiy, 1 (¢, ,u,) tO bE the
set of (y, z1,z2) € R x [¢1,u1] x [l2,uz] that satisfy the McCormick inequalities (2):

Y > ugw1 +u1Te —uiuz, y > Loxy +Liza — L1la,

y Swuexy +l1xe — Lrug, Yy < Loxy +uizs — uile.

Now suppose,u € R™ with £ < u. A relaxation of this nonconvex se{, ,; can be constructed in a higher-
dimensional space by introducing variables. . ., yn that satisfyy; = z;y;41 fori = 1,...,n — 1 andy, = zn
and then relaxing these bilinear constraints with the Mo@ck inequalities. This leads to a “recursive” McCormick
relaxation ofX|, ,,; which is the polytope defined by:

RMC(X[¢1) = {(2,9) €l6.u] x B | yn = 2,

(Y, Tis yit1) € Mc[li,ui]x[&ﬂ,aiﬂpi =1,...,n— 1}
Whereén d§f £y andiiy, déf Un, andl@- = min{ﬂi+1ui, ﬂi+1fi, giJrlui, ZiJrlgi} andi; = max{ﬂiJrlui, 'aiJrl(i: Zi+lui> gz’«kl&'}
are implied lower and upper boundsgrfor: = n—1, ..., 1. The variabley,, could be eliminated from the description
of RMC(X[M]), but we include it for notational convenience.
Ryoo and Sahinidis [20] proved the following result.

Theorem 1 ([20]) Let f(z) = [];, z;. The recursive McCormick relaxation describes the convébolfiyf over the
unit hypercube, i.eProj, , ) (RMC(Xp)) = conv(Xp).

As observed in [20], wheh = 0, the assumption that = 1 is without loss of generality; i.e., we can show the
same result holds fof(z) over|0, u].

Corollary 1 Proj(, ) (RI\/IC(X[OJL])) = conv(X[g y))-



Proof We only need to prov@roj, .,y (RMC(X[q ,)) € conv(X[q ). Let (z',41) € Proje, ) (RMC(X[g 4))) »
71 = ([17-, w) i, and Dy = Diag(u). We claim that(D;, '2’,7,) € Proj(;.,,) (RMC(Xp)). Clearly, D 'a' €
H. Letyh,...,y, be such thatz’,y) € RMC(X[o,,)) and lety; = v ([T}_; uj)_l, i=1,...,n. Then, it is easy
to check that(D; '2’,5) € RMC(Xy). Then, becauseD; '2’,7;) € Proj, ,,) (RMC(Xy)) Theorem 1 implies
there exists\ € Agn such thaty", A, (e, v*) = (Dy'a’,5,) wherez® k = 1,...,2" are the vertices oKz and
y¥ = f(zF). This impliesz’ = 3", \gDuz®, andy’ = 32, A f(=F) [T7; u;. SinceDyz® € [0,u] and f(Duz®) =
F(a®) TTi, u; for all k this implies(z’,y') can be written as a convex combination of POINtsig ,,)- O

2.2 Symmetric bounds

We now show another, somewhat surprising, case where thesiee McCormick relaxation defines the convex hull of
a single multilinear term. Specifically, we show that the tetaxations are the same if the boundsrsre symmetric
about zero, i.eg € [—u, u] for someu € R’} . We begin with the case in whiche [—1, 1]. First observe that in this
case, the implied bounds ap for i = 1,...,n are|l;, @;] = [—1,1]. Consequently, the conditiortg;, z;, yi;1) €
MC|_ 1)z in the definition ofRMC(X|_; 1)) have the form

Yi 2 T —Yir1 — 1L, ¥ > x+yir1— 1,

Yi <x—yir1+ 1, oy < -ty + 1,

fori=1,...,n—1.
The result is based on the following characterization ofetkteeme points ORMC(X|_; 13).

Theorem 2 If (z,y) is an extreme point ®@MC(X|_; y)), then(z, y) € {1, 132,
Proof For any(c, d) € R?", we show that the linear program

max cr + dy 4)
(z,9)ERMC(X[_1 1)

has an optimal solutiof*, y*) € {—1,1}?", which establishes the claim.
Forz € [-1,1]andt € N = {1,...,n}, define

n

n
fi(z) =  max o+ Y diyi
i=t

Yts-osYn i=t
s't'(yi7xi,yi+1) S MC[—171]27 i:t,~~~7n_17

yt = z, xn € [—1,1].

Then f;(z) satisfies the following recursive relationship foe 1,...,n — 1:
fe(2) = diz + (X ){CtIt + feriyer) | (3@ ye) € MCl_y 2.} (5)
Tt Yt4+1

We show by induction thaf;(z) is convex for allt. First, fn(2) = dnz + |cn|. Now assumefy41(z) is convex. It
follows that the maximum in the expression ffz) given in (5) is attained at an extreme point of the the polybed
Q(2), given by the set ofz;, y: 1) € [—1,1)? that satisfy

—rt—yt+1 < 1+2z, zt+yy1 <1+2

—rtt+y+1 <1—2 wxt—yy1 <1—2



It is easy to check that for anye [—1, 1] the extreme points @) (z) are{(-1, —z2), (1, 2), (—z, —1), (z, 1) }. Therefore,

fi(2) = dpz + max{cs + fir1(2), —ct + frr1(=2), —crz + fre1(=1),cez + frr1 (1)}

Each of the functions taken in theax is a convex function of, showing thatf;(z) is convex.
Finally, observe that (4) is equivalentieax, c(_1 1) f1(y1).- As fi(y1) is convex, there exists a solution to this
with y7 € {—1,1}. Proceeding inductively, assume there is an optimal smiut (5) with (], y7, 1) € {-1, 1}2 for

i=1,...,t— 1. Fort, recall that for any fixed, (5) has an extreme point optimal solution among thésgty, 1) €
{(-1,-2),(1,2),(—2,—1),(2,1)}. Thus, using = y; € {—1, 1} (from the induction hypothesis) shows there exists
zi € {—1,1} andy;; € {—1,1} optimal for (5). O

Theorem 3 Let f(z) = [];, ;. The recursive McCormick relaxation describes the convekdiuf over[—1,1],
i.e.,Proji,. ) (RMC(X[_Ll])) = conv(X[_1 1))-

Proof We only need to proveroj, , ) (RMC(X[_M])) C conv(X|_1,1))- By Theorem 2, if(z,y) is an extreme
point of RMC(X[_4 1)) then(z,y) € {1, 1}2", For each, it is easily checked that ify:, z¢, yi11) € MCi_1 132,
z¢,yt € {—1,1}, theny; = xy,11, and thereforgy =[]}, =;. Thus,(z,y1) € X[—1,1]- This is sufficient to prove
the result, since this shows that every poinPiaj (RMC(X[_LI])) can be written as a convex combination of points
in X[_y 1. O

Using arguments identical to those in the proof of Coroltagjelds the following generalization.

Corollary 2 Letu € R}.. ThenProj, . (RMC(X|_, ) = conv(X[_y, ).

2.3 Worst-case examples

n

We have seen that when eithee 0 or £ = —u, the recursive McCormick relaxation ¢fx) = [];__, =; is as good

as the convex hull relaxation. We now show that when bothedelrconditions are violated, the recursive McCormick
relaxation can be arbitrarily worse than the convex hull.ésasure the relative quality of these relaxations by com-
paring the distance between the minimum and maximum allemadues fory at a pointz. Specifically, for a given

D = [¢,u], we define

chgapp[f](z) = max{y| (z,y) € conv(XD)} - min{y | (z,y) € conv(XD)}

=cavp|[f](z) =vexp[f](z)

rmegap | f](z) = max{y| (z,y) € RMC(Xp)} — min{y] (z,y) € RMC(Xp)} .

défrmcuD [fl(z) déffmdD[f](z)

The relationrmcgapp[f](z) > chgapp[f](x) always holds, and by Corollaries 1 and 2 equality holds whtree
£ = 0or{ = —u. We present examples that show thatgap 5[ f](x) can be arbitrarily larger thathgap [ f](z).

First, letD, = [1,u]3 for someu > 1 and consider the point = (“T“,u, 1). The only wayz can be written
as a convex combination of vertices b, is @ = 1(1,u,1) + & (u,u,1). Thus,vexp, [f](&) = cavp,[f](Z) SO
chgapp [f](Z) = 0. Next consider the recursive McCormick relaxation fobver D,,. It is possible to check that
rmcup,, [f](2) = «* + 5% andrmelp, [f](2) = u + “5*, and therefore

rmcgapp, [f](2) = rmeup, [£](&) — rmclp,, [f](&) = u® — u > 0.

Sincechgapp  [f](£) = 0, this example shows that, if we let— oo, the difference in relaxation quality between the
convex hull and recursive McCormick relaxations can beteatily large even for fixedh = 3.



Now, let D,, = [—2,2]"72 x [0,2] x [—2,2], and consider the poirit = (2,...,2,0,0,2). Again, the only way
2 can be written as a convex combination of verticedgfis & = %(2, ey 2,-2,0,2) + %(2, ...,2,2,0,2) and
hencevexp, [f](#) = cavp, [f](#) SOchgapp_ [f](#) = 0. On the other hand, if we consider the recursive McCormick
relaxation off over Dy, it can be verified that forn > 3, rmcup_ [f](&) = 2" andrmclp,_ [f](#) = —2™ and hence
rmcgapp [f](£) = 2"+1 Thus, by letting» — oo, we see that even if the boundandu do not grow, the difference
in relaxation quality between the convex hull and recurhormick relaxations can be arbitrarily large.

3 General multilinear functions

We now consider general multilinear functions of the form

s(x) = a [] =5 (6)

teT  jeJ

defined over: € [¢, ], and study concave upper bounding and convex lower bourfdimgions of¢ over[¢, u]. In
Section 3.1 we focus on concave envelopes, and study casgsdh the concave envelope @fcan be written as a
sum of concave envelopes of the individual terms. Many ofetresults follow from results in [6,15], but we review
them since they are necessary in what follows. Our main tesu in Section 3.2, where we show that for bilinear
functions (i.e.|J;| < 2 Vt), the gap between the McCormick upper and lower boundingtfons of ¢ is uniformly
within a constant of the gap between the concave and convelages ofp.

Recall that the concave and convex envelopes ludive the following representations [19, 22]:

mn on
cavie o ¢)(@) = max{ 3" Mb(@h) | D M =1 € 250} @
k=1 k=1
on on
vex(e ) [8)() = min{ 3" Mo@h) | S ek =z, 3 € Ag0 ) @®
k=1 k=1

wherez® k =1,...,2" are the vertices d¥, u].

3.1 Concave envelope of a sum of multilinear terms

The first result is an almost immediate consequence of [6haisceen explicitly proved in [15].

Theorem 4 ([15]) Let¢ : H — R be as defined i(6), and assume tha; > 0forall ¢ € 7. Also letf;(z) = [, ;, z;
for ¢ € T. Then the concave envelopegof given by the sum of concave envelopef of

cavy[é](z) = Zat cavy|fi](z) Vz e H.

teT
The conditiora; > 0 for all ¢t € T'is necessary, evendfis a bilinear function. Example 2 in Section 3.2.3 provides
an example of a bilinear function with a single negativand are € H at which the sum of concave envelopes of the

individual bilinear terms is strictly larger than the come&nvelope of the bilinear function.
Theorem 4 can be generalized to the case[(, u], provided? > 0.

Theorem 5 Lets, v ¢ R™ satisfy0 < ¢ < w and let : [¢,u] — R be as defined i(6), and assume that; > 0 for all
teT.Also letfi(z) = Hje,t x; for ¢ € T. Then the concave envelopegobver [¢, v] is given by the sum of concave
envelopes of;:

cavye [0](z) = > arcavy ,[fil(z) Vo € 6 u].

teT



Proof Define¢’ : H — R by

¢ () =¢ (Diag(u — 0’ + Z) = Z at ft (Diag(u -0z + l)

teT
’opt
=> ar Y apfila’)
teT keK:

where the functiong;, have the formf; («') = [, ;, o’ Also,aj, > 0 since each is a product 6f and (u; — ¢;)
terms and’; > 0. Now, letgi («") = f¢ (Diag(u — £)z’ +€) = 3, c ¢, ap fr(z') for t € T. Applying Theorem 4 twice
then yields

cavplg)(a) =Y ar Y apcavy[fil(z') =) arcavpleil(a) Va' € H. (9)

teT keK; teT
Next, because; (z') = fi(Diag(u — £)z’ + £) andx € H if and only if (Diag(u — £)2’ + £) € [¢, 4], itis not hard to
see that
cavylor](z') = cavyy, [ f¢](Diag(u — 0Oz’ +0), V'€ H. (10)

Now, letz € [¢,u] and letz’ = Diag(u — £)~!(z — £) andy’ = cavy[¢](z’). Then there exista € Ay» such
that >, \p2" = 2’ andY", \e¢/ (&%) = o/, wherez® k = 1,...,2" are the vertices off. Then, observing that
2* = Diag(u — 0)Z* + ¢, fork = 1,...,2" are the vertices d?, u] we have

2" 2"
Z ezt = Z Ak (Diag(u — E)ik + Z) = Diag(u — )z’ + 0=z
k=1 k=1

and so\ is feasible to the linear program (7) definiegy|, ., [¢]. Also, the objective value ofin (7) is

on

o
ST =3 M (@) =y = arcavylpl(a)) = Y arcavy [fil(@)
k=1 k=1

teT teT

where the second-to-last equality follows from (9) and te Equality follows from (10). This proves

cavig, @) > > ay cavig [fil (@)

teT

and completes the proof as the reverse inequality is imrteedia O
The following example shows that for general multilineamdtions, the conditiori > 0 is necessary.

Example 1Let D = [-1,1] x [0,1]® and¢(z) = f1(z) + f2(z) wherefi(z) = z1zax3 and fo(x) = wax3w4, and
consider the point = (—1,1/3,1/3,1/3). For this example, it is easy to verify by solving (7) that p[¢](Z) = 0.
In addition, (7) can be used to firdvp[f1](£) = 0 andcavp[f2](2) = 1/3, and thuscavp[¢](2) < cavp[fi](£) +

cavp[f2](2).

For bilinear functions, Theorem 4 can be generalized tanallos [¢, u] for any ¢ < w. The arguments are fairly
standard, but we provide a proof for completeness.

Corollary 3 Letb(z) = Z{M}GE a;;xiw; forx € [0, u], wherel,u € R™ and E is a set of{i, j} pairs, and assume
a;; > 0forall {i,5} € E. Then the concave envelopetois equal to the termwise McCormick upper bounding
function:
caviy,y) [b](x) = Z a;; min{ujr; + €z — Lug, bz + uiz; —uil;} Vo €[4 u)].
{i,j}€E



Proof Definet’ : H — R by
Va')=0 (Diag(u —0)a’ —|—€) = Z agj ((ul — Ei)xg +€i) ((uj — Zj) x; +Zj)
{i,j}eE
= f'(a") + L(z),

wheref'(z') = 32, e p aij (ui — £) (u; — £;) 22} is a bilinear function having positive coefficients, abg’) =
S pigyen @i [6 (ui — )z + i (uj — £5)a; + ¢;¢;] is an affine function of’. Thus,

cavy[b'](z') = cavy[f](z') + L(z")

= Z Qij (ul — Ez) <Uj — Ej) min{x;, 1’;} + L(Il)
{i,j}eE

where the first equation follows becausds an affine function, and the second equation follows fronreofem 4
and from the fact that foif (z1,22) = @122, cavjg 1)2[f](z1,72) = min{z1,22}. By a simple scaling argument
(2" € H < Diag(u — £)z’ + £ € [¢,u]) it holds that

cavg[t')(z') = cavyy,,,) [b](Diag(u — 0z’ +0).
Now, letz € [¢,u] and letz’ = Diag(u — £)~*(z — £) € H. Then,

cavig ) [b](z) = cavy [b'](z))
= Z 7 (ul — 41) (u]‘ — ZJ) min{mg,x;} —+ L(ml)
{i.j}eE
= Z az; min{ujz; + Lz — Liug, Ljwg + ugr; — ugly}
{i,j}e€E

where the last equation follows because for efich} € F,
(ui — Zz) (Uj — g]) min{x;7 CL‘;} + Ej (ui — El)l‘; + &(uj — ZJ)CL‘; + élfj

= min{(u; — £;) (i — &), (wi — £) (x5 — €5)} + £ (i — &) + Li(x5 — £5) + il

= min{UjCCi + Kil‘j — fiuj‘,fjl’i +uir; — uifj}.

O
3.2 Approximation results for bilinear functions
In this section, we study the strength of the McCormick raten for bilinear functions of the form:

{i,j}€E

for x € H, whereFE is a subset of unordered pairs of distinct indice®vVia= {1, ..., n}. Specifically, the McCormick
upper bounding function is

meu g [b] () (;CI,I:/E)HE(P Z AijYij
{i.j}eE
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and the McCormick lower bounding function is

lg[b = i iiYii
bl = e 2 o
{i,j}€E

whereP = {z € H,y € [0, 1]'E | y;; > 2 + 25 — 1, yij < @, vi; <z, V{i,j} € E} is the polyhedron obtained
by using the McCormick inequalities to bound the bilineantsz; ;.

We are interested in the quality of the McCormick approxioraas compared to the relaxation given by the convex
and concave envelopesiofWe therefore define

mcgap g [b](xz) = mecug[b](z) — mclg [b](x), and

chgapyr[b](z) = cavy [b](x) — vexs[b](x).

mcgap [b](x) is a measure of the tightness of the McCormick relaxatiot(ef at each point: € H = [0,1]", and
likewise forchgap[b](z). In this section, we show that under certain conditionsgap [b](x) is uniformly close to
chgap [b](x).

We begin in Section 3.2.1 by reviewing some existing resuitestablishing some new results needed for proving
our main theorems. Then, in Section 3.2.2 we give our refuithe case:;; > 0 for all {4, j} € E. In Section 3.2.3
we present our (weaker) results for the general case. Thouighis section we assumec H. However, all the
results can be generalizediae [¢, v] using arguments similar to those in the proof of Corollary 3.

We first introduce some new notation. For a graph- (N, E), we letx(G) be the coloring number af. Also,
whenG is associated with weights. for e € E, we definew(E’) = 3 . we for any E' C E. We also define
Et ={e€E|w. >0}, E- =E\E",andfor! C E,w™(E') = cpsnp we aNdw™ (E') = 3 ¢ g We-
We letS = {S | S C N} be the set of all subsets of. For two setsS;, Sy C N, §(S1,S52) = {e € E | e has one
end inS; and one end itY> }. For anysS € S, we letd(S) = §(S, N \ S) andy(S) = {e € E | e has both ends i§}.
Finally, fori € N, we letS; = {S € S | i € S} be the set of subsets that contain elemient

3.2.1 Preliminaries

We first state two existing results that are required for malysis.

Theorem 6 ([18]) LetP = {z € H,y € [0, 1]|E| |yij > @i +a5 — 1, yijy < x4, yij < x5, V{i,j} € E}. The extreme
points of P are all {0,1/2, 1}-valued.

In [18], Theorem 6 is proved for the case ttiais the set of edges of a complete graph, but the theorem igrakso
whenE is any subset of edges.

Theorem 7 ([13]) Consider any grapld = (N, E)) having|N| even and weighis. for e € E. There exists a matching

M C E, with
w(E)

The following corollary is a slight strengthening of the pimresult that there exists a cut with weight at least half
the weight of all edges in the graph (see, e.g., Theorem J16[). It is a slight improvement on a result in [4]. The
slight improvement is important for our results and can b&ioled using arguments from [10] using Theorem 7 in
place of the (weaker) bound on the size of a matching used.iigée also the discussion in [12]).
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Corollary 4 LetG = (N, E) be a graph with N| even and weights. for e € E. Then there exist cuts;, C2 C E in
G having

0> J)+ S 12)
(00 < guiF) - % (13)

Proof By applying Theorem 7 using weights, = |we|, there exists a matching/ in the graph(N, E) with
Yoeen [Wel = D cplwel/(IN| — 1). We construct a random cdt to be defined by the edges between the sets
S and N \ S which are generated as follows. For every edge {i,j} € M, if we > 0 we assign to S andj to
N\ S with probability1/2 and assign to S and: to N \ S with probability1/2; if w. < 0 we assign andj to S with
probability1/2 and assigri and; to N \ .S with probability 1/2. Thus, with probabilityl, every positive weight edge
in M is in the cutC and every nonpositive weight edgeifi is not in the cut’, but every node that was matched by
an edge inM has equal probability of being ifi or N \ S. For every node that was not matched hy/, we assign
to S with probability1/2 and toN \ S with probability1/2. Thus, any edge € E \ M has probabilityl /2 of being
in the cutC. Therefore, the expected weight of the cut is:

Blw(@)] =w (M) + 5 3 we =w (M) + L (w(B) —w* (M) w7 (M)

e€ E\M

= Sw(E) + 5 (w" (M) —w™ (M))

1
2
ZeeE|w€|

2(INI—1)

1 1 1
= Jw(B) + 5 ) |we| > Jw(E) +

eeM
This implies there exists a cut; that achieves at least the value of the expected weight ®fréinidom cut, proving
(12).

Existence of a cu€y satisfying (13) is established with a nearly identical angat as forC;, with the exception
being that given a matchinyy with 3 __,, |we| > > c g lwe|/(|N| — 1), arandom cu€ is constructed by placing
and; in the same node sef (or NV \ S with equal probability) ifw; ;3 > 0 and by placing and; in different node
sets ifwg; j; <0. O

This result can be strengthened further for graphs that Aaweall coloring number when all weights are nonneg-
ative.

Lemmal LetG = (N, E) be a graph withy(G) even, and weightg. > 0 for e € E. Then there exist a cd in G
with

Proof Let x = x(G) and letSy,. .., S, be a partition ofV such thaty(S;) = 0 forall : = 1,...,k. (l.e., these sets
define a coloring of sizg.) Define a complete grapf’ with verticesN’ = {1,..., x}, and definev;; = w(5(S;, S;))
for 1 <i < j < x as the weights on the edgé®, in G’. By definition,w(E’") = w(E). Applying Corollary 4 to the
graphG’, there exists a cut’ in G with

@o(C') > Zw(E") +

N | =
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Now letC be the set of edges ii defined byC' = U{m—}ec, 5(S;,5;). Sincew(C) = w(C") andC is a cut inG, this
proves the result. O

Due to Theorem 6, vectors that are{0,1/2,1}-valued play an important role in our analysis. We therefore
determinemcgapy [b](x) and find bounds oBav g [b](z) andvexg [b](z) for such vectors.

Lemma2 Letz € R" be{0,1/2,1}-valued and lefly = {i € N | z; = 1} andTy = {i € N | z; = 1/2}. Then

megapy[bl(x) =3 Y lagl.
{i,5}ev(Ty)

Proof We first derive an expression fatcgap; [b](x) for anyz € H:

mcgap [b](x) = Z ;] (min{xi7 x;} — max{x; + z; — 1, O}) . (14)
{i,j}€E

Indeed,

megapy [8)(x) = meup[b)(z) — mel [b](x)

= Z a;; min{xz;, x;} + Z a;; max{z; +z; — 1,0}

{i.j}eE* {i,j}eE~
_ ( Z a;; max{zr; + x; — 1,0} + Z ai; min{x,;,xj})
{i.j}eE"* {i.g}eE~
= Z las;|(min{z;, ;} — max{z; +z; —1,0})
{i,j}€E

Now, if {,5} € v(T1), and henceé, j € T1, thenmin{z;, z;} = max{z; + z; — 1,0} = L. If {7, 5} € §(T1,T%), then
min{z;,z;} = max{z; + z; — 1,0} = 1/2.If {1, 5} € v(T¥), thenz; = z; = 1/2 and hencenin{z;,z;} = 1/2 and
max{z; + z; — 1,0} = 0. Finally, in all other cases fofi, j}, min{z;,z;} = max{z; + z; — 1,0} = 0. Thus, the
result follows from (14). O

Lemma3 Letz € R" be{0,1/2,1}-valued and lef’y = {i € N |z; = 1} andTy = {i € N | z; = 1/2}.

(@) Ifa;; > 0forall {i,j} € E, then

1

vexss ](z) < a(2(T1)) + 50000, T)) + Ja((TY)) = frzr—ya

((Ty))- (15)
(b) If the weightsy;;, {4, } € E have mixed-sign, then

 Digrenry lail

vexs[(2) < ay(T})) + 3a(6(T1.Ty)) + gal(T)) - =, (16)
and > s
caviy (x) > a((T1)) + 3a(d(T2, ) + ja(y(Ty) + =0 (17)
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Proof First, observe that for every verteX of H, if we let S, = {i | 2} = 1} thenb(z") = 3, -1 p aijafal =
Z{i,j}e’y(sk) a;; = a(y(Sk)). Thus, we can rewrite the LP (8) definimgk; [b] () as follows:

vexy [b](z) = i D a(v(S)As (18a)
SeSs

st.Y Ag=m, i=1,...,n (18b)
SeS;

Now, letC' = 6(U1, U2) be a maximum weight cut in the subgragh of G induced by the nodeg;, wherelU;
andU; are the node sets defining the clit U Uz = Ty andU; N Uz = 0). Let S1 = T1 U Uy andSe = T1 U Us, and
construct a solution to (18) by lettings, = Ag, = 1/2, and\g = 0 otherwise. Clearly\ € Aq». Also, if ¢ € T; then
i € 51N S2,80) gc5 As = As; +As, = 1 =w;. If i € Ty, theni is in eitherSy or Sz, S0 Jgc . As = 1/2 = ;.
Otherwise, is in neitherS; nor S, and hence (18b) is satisfied as well. Thus, becauseone feasible solution to
(18),

vexs[B](z) < 2 (a(x(S1)) +a(1(52))). (19)

Next, using the definitions of; andS», we observe that far=1, 2

a(y(5:)) = a(y(Ui)) + a(6(T1, Us)) + a(y(T1)).

Then, observing thai(6(T1, U1))+a(6(T1, Uz2)) = a(6(T1, Ty)) anda(y(Ur))+a(y(U2)) = a(y(Ty))—a(6(U1, Uz2)) =
a(v(Ty)) — a(C) yields

a(y(51)) + a(v(52)) = 2a(y(Th)) + a(6(T1, Ty)) + a(v(T¥)) — a(C). (20)

Now, if a;; > 0 for all {4, j} € E, then because the coloring numberf is no larger than the coloring number@f
Lemma 1 implies

a(C) > Ta(y(Ty)) +

: )

2(x(G) -1
Combining this with (20) and (19) yields part (a). When théghitsa,;; aren’t necessarily nonnegative, inequality (12)
of Lemma 4 yields

1 W 2ijyeE lai]
a(C) > ia(W(Tj)) + D
which, combined with (20) and (19), proves (16) for part (b).

The proof of (17) is similar to that of (16), except that we ussgjuality (13) in Lemma 4 to obtain a cGt such
that
Z{i,j}eE |a;|
2(INI = 1)
This cut can then be used to construct a feasible solutiohdartaximization problem definingav g [b](z) with
objective value equal to the lower bound in (17). O

a(C2) < Saly(Ty)) -

3.2.2 Bilinear functions with positive weights

In this section, we consider bilinear functions havpwsitiveweights:a;; > 0 for all {7, j} € E. We first state the
main result.
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Theorem 8 LetG = (N, E) have a coloring of sizg, and letb(x) be a bilinear function of the forrfl1) with a;; > 0
forall {i,5} € E. Thenify is even,

megaps [B)(z) < (2 - %) chgapp[bl(x) Vi€ H,

and if x is odd,

mcgap g [b](x) < (2 - %) chgapy[b](z) Vz € H.
Note that the theorem implies the result that for bipartiggpds (graphs with coloring of size two) the McCormick
envelopes provide the convex lower and upper envelopeshwims first proved in [5, 9].

Proof We prove the case whefeis even. The case whegeis odd is an immediate consequence since if the coloring
numbery(G) of a graph is odd, then it has an even coloring of §iz€) + 1. Let K = 2 — % We need to prove

min (K chgapy [t](x) — megapy [b](x)) = 0. (21)

Next, because;; > 0 for all {¢,j} € E, Theorem 4 applies and henesv [b](x) = mcug[b](x). Using this, the
definitions ofchgap[b] and mcgapg[b], and expanding the definition @ficly [b](z), the minimization problem in
(21) is equivalent to:

min ( (K — 1) cavy [b](z) — K vexy [b](z) + Z @ijYij
(a:,y)GP( Ter J ])

whereP = {z € H,y € [0,1]“3‘ | yij >z +x5 — 1, yi5 < 4, yi; < x5, V{i,j} € E}is as defined in Theorem
6. Then, becauseav gy [b](z) and — vexg[b](x) are concave functions, the above problem is a concave nzation
problem over a polytope, and hence achieves its minimum ax&neme point. Theorem 6 then implies that it is

sufficient to prove
K chgapg[b](z) — megapg [b](z) >0 (22)

for all {0,1/2,1} vectorse.
Therefore, let: be an arbitrary{0,1/2, 1}-valued vector, and lef; = {i € N | z; = 1} andTy = {i € N | z; =
1/2}. Sincea;; > 0 for all {i,j} € E, Lemma 2 then implies

1 1
megapu b)) = 5 D laij| = 3a(1(Ty). (23)
{i:j}e'Y(Tf)
Next, again using Theorem 4,
cavy [b](z) = meug[b)(z) = Z a;; min{z;, x;}
{i,j}eFE

= a(y(T1)) + 5a(3(T1, T) + Sa(x(T)),

where the last equality follows becausén{z;,z;} = 1for {1, 5} € v(T1), min{xz;,x;} = 1/2 for {i,j} € v(T¢) U
d(T1,Ty), andmin{z;, z;} = 0 otherwise. Combining this with (15) from Lemma 3 and (23)dse

chgaps8](a) = coviB(o) — vexu8(a) > § (14 1 ) ata(zy)
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Rearranging yields

mcgapy [b](z) < 2

and so indeed (22) holds. O

3.2.3 General bilinear functions

In this section, we consider bilinear functions that mayehboth positive and negative coefficients on the bilinear
terms. We first state the main result.
Theorem 9 LetG = (N, E) and letb(z) be a bilinear function of the forrfl1l) overz € H. Then if|N| is even,
megapy [b](z) < (|N| — 1) chgapy[b](z) Vz € H, (24)
and if [N | is odd,
mcgapy [b](z) < |N|chgapy[b](z) Vz € H.
Proof Asin the proof of Theorem 8, we restrict attention to the agisere| V| is even. First, for;, z; € [0, 1] observe

that

min{z;, z;} — max{x; + z; — 1,0} = min{z;, z;} + min{l — z; — z;,0}
= min{z; + min{l — z; — z;,0},z; + min{1 — 2; — z;,0}

=min{xz;,z;,1 —x;,1—2;}.
Thus, using this in (14) we can writecgap g [b](x) as

mcgapy [b](x) = Z lag;| min{z;, x5, 1 — 4,1 — x5}

{i.j}eE
=, Xl
’ {i,j}eE

whereQ = {z € H,z e RIF | 2 + 2 < 1,255 + 25 < 1,25 < 24,255 < 2;,%{i,j} € E}. All the constraints of)
are of the formz;; — z; < 0 or z;; + «; < 1, and hence have the form of the constraint matrix @fSAT problem.
Thus, the results of [11] imply that all vertices @fare{0, 1/2, 1}-valued.

Now, we need to prove

min ((|N] - 1) chgapp [b](z) — mcgapy [b](x)) > 0.

This minimization problem is equivalent to:

min_ (V] - 1) chgapyy[tl(a) = > laislziy )

(r2)e@ tyer

Sincechgapg[b](z) is a concave function af, this is a concave minimization problem over the polyhedgorand
hence has an extreme point optimal solution. Thus, just geeiproof of Theorem 8, it is sufficient to show that (24)
holds for{0, 1/2, 1}-valuedz.
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Thus, letz be any{0,1/2,1}-valued vector. Using (16) and (17) from Lemma 3 to bound he#y, [b](z) and
cavy [b](z) yields

chgapy [b](z) = cavy[b](z) — vexy [b](z)

1
Zm< Yo lagl+ Y |aij|)

{i.5}ev(Ty) {i.rev(Ty)

= m mcgapy [9](2)

by Lemma 2, completing the proof. O

The bound in Theorem 9 is significantly weaker than Theorenhi@mprovides a constant approximation guaran-
tee; in this case, the approximation factorisn §4 we present numerical examples that suggest this bound tiglhty
and we leave it as an open question whether there is a colfiatant approximation. The following example shows
that even for bipartite graphs, when the weights have miigusst is possible thathgap[b](z) < mcgapg[b](x),
which is in contrast to the case when the weights are all rgaitie.

Example 2Consider the bipartite graph with = 4 nodes and edge séf = {(1,3),(1,4),(2,3),(2,4)} with
weightsa14 = —1 anda;; = 1 otherwise, and consider the point= (1/2,1/2,1/2,1/2). Thenmcgapy[b](z) =
(1/2)Z{i’j}€E laij| = 2. For cavy[b](z), the optimal value seta(; 33 = Ay 4y = 1/2 and achieves value
(1/2)(a13 + a24) = 1 and forvexy [b](z) the optimal value setd(; 41 = X533 = 1/2 and achieves the value
(1/2)(a14 + a23) = 0. Thus,chgapy[b](z) = 1 < 2 = mcgapy[b](x). Note also thatcugy[b](z) = 3/2 > 1 =
cavy [b](x), showing the necessity af > 0in Theorem 4, even for the case of a bilinear function in wiiick (N, E)

is bipartite.

Theorem 8 provides a worst-case approximation guarantdgliiwear functions having nonnegative weights that
increases with the coloring number of the graph underlyirgliaear function. Since graphs with small coloring
number tend to be less dense, this suggests that the McCGoratéxation gap will generally be closer to the convex
hull relaxation gap for sparser graphs. The next resultiges/further support for this intuition, regardless of tigns
of the edge weights. Given a graph= (N, E) and weights:;; for {i, j} € E, foranyE’ C E we denoté, as the
bilinear function using only the terms i’

bE/(:c) = Z AjjTiTj.

{ij}eE
Theorem 10 LetE’ C E. Then, for any: € H,
megapy[bpr](z) — chgapy [bp/](x) < mcgapy [bp](z) — chgapy [bg](2).
Proof We prove the equivalent inequality:
mcgapy [bg|(x) — megapy[ber](x) = chgapy [b(x) — chgapy[be/](x). (25)

We prove the result holds fat’ = E \ {k, 1} where{k, [} is an arbitrary edge i, which implies the result for any
E’ C E by induction.

First supposer; > 0. Then,mcugy [bg|(z) — mecuy [bp/|(z) = ap max{zy + x; — 1,0} andmcly [bg|(z) —
mclg[bp/](z) = apmin{xg,z;}. Hence,megapy[bp](z) — mcgapy[bp/](z) = akl(max{mk + z; — 1,0} —
min{zy, z;}). Similarly, if ay; < 0, thenmcgapy[bp](z) — mcgapy [bp](z) = —ag (max{z), + z; — 1,0} —
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min{zy,z;}). Thus, for anyuy,,

mcgapy [bp](z) — mcgapy [bp](x) = |ak| (max{zy + z; — 1,0} — min{zy, z;}). (26)

Now, suppose agaify,; > 0 and consider the linear program definite 7 [b | (x):

cavr(bp](r) = max > a(y"(5)\s (27a)
™ ses

st. > Ag=m, i=1,...,n (27b)
SeS;

where we have made the dependence on the edde eplicit: v (S) = {{i,j} € E|i € S,j € S}. LetAF be an
optimal solution to (27). Clearly” is also a feasible solution to the problem (27) wh#rreplacest. Thus,

cavi [be)(@) = cavirb)(x) < 3 (P ()N = 3 a7 (5))\F
SeSs Ses

=Y (a0 -t ()

SeSH{k,l}evyE(S)

= Z akl)\g.

SesSLNS;

But, (27b) impliesy_gc s, 15, A§ < 2k andY geg, ns, A6 < z; and hence,

cavg[bp](z) — cavy [bpr](z) < ap min{zy, 2} (28)

Now let \¥ be an optimal solution to the linear program definirgy; [bz](x), which is (27) withmax replaced
by min. As \¥ is also feasible to the LP definingxy [bz/](z), we have, similar to the argument fev 7,

vexpy [b)(@) — vexpr o] (@) = Y a(y"(S)AE = 3 a2 (9))AF
Ses Ses

= Z aklkg.

SeSLNS;
Next, (27b) implies

Tetm= Y A+ D A= D AE+ D A <1+ > AL

SESk SeS; SeSLUS; SESLNS; SeSLNS,;

Since also\L > 0 this implies
E
vexyr [bp)(x) —vex[bp)(@) > D> apA§ > agmax{wy, +z; —1,0}.
SeSLNS;

Combining this with (28) implies

chgapy[bE](z) — chgapy[br](x)
= cavy[bi](z) — vexp [be](z) — (cavH[bE/](x) — vexyy [bE/](x))
< ap (HlaX{CCk +x— 1, 0} + min{l‘k,l’[})

= mcgapy[bp|(z) — megapy[bp ().
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The argument fot; < 0 is similar, with the only difference being that the ineqtya[sesmsl AE < min{zy, 2}
is needed to bounekx g [bg](z) — vexy[bp/](2) and the inequality ¢, s, s, AE > max{z) + z; — 1,0} is needed
to boundcavH[bE](x) —cavy[bp/](x).

]

4 Numerical experiments

In this section we present some numerical examples thatridite and complement the theory we presented in the
previous sections.

First we look at some experiments related to the approxanagsults for bilinear functions. We are interested
in understanding how tight our results are for both the pasitoefficients case (Theorem 8) and the mixed-sign
coefficients case (Theorem 9). Also, inspired by TheorenwEare interested in the effect the graph density has on
the quality of the McCormick relaxation compared to the @xnkull relaxation.

In our first experiment, we fixed the dimensionrat= 7 and randomly generated 4000 graphs with varying
density. We consider two cases for the coefficients on thiedait terms appearing in the corresponding bilinear func-
tion: (1) all coefficients are positive one, and (2) coeffitgshave mixed-sign, having ‘+1’ with probabilig/4 and
-1’ with probability 1/4. For each random graph, we computed the maximum ratio batthee McCormick re-
laxation gap and the convex hull relaxation gap of the cpording bilinear function. Specifically, we calculated:
max,¢c g {mcgapg [b](z)/ chgapg[b](x)} . This maximum was found by calculatimgcgap g [b](z) andchgap g [b](z)
for all 37 {0,1/2, 1}-valued points inH, where the linear programs (7) and (8) were used to calcutate ;; [b] ()
for each of these points.

Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio
avg max mode(%) | avg max mode(%)

1.000 1.000 1.000(100) 1.111 2.000 1.000(88.7
1487 1500 1.500(94.9) 1.706 2.250 1.500(41.5
1500 1500 1.500(100) 1.902 2.500 2.000(63.0
1667 1667 1.667(99.8) 2.051 2.600 2.000(41.4
1.667 1.667 1.667(100) 2.205 3.000 2.500(54.1
1750 1.750 1.750(100) 2.294 3.000 2.500(61.4

Table1l Maximum gap ratio for random graphs of size 7, summarized byricgjmumber.

~N o oA wNX

Table 1 displays the results summarized by coloring nunfbar.each coloring number from two to seven, we
report the average, maximum, and mode of the maximum ratemtaver all graphs that had that coloring number. For
the mode, we also report the percentage of the graphs thiavadithat quantity. These results show that the bound of
Theorem 8 is tight for coloring number up to seven. Also, thstvnajority of the randomly generated graphs achieved
this worst-case bound. In contrast, when the coefficiente Ingixed-sign, the bound of Theorem 9 does not appear
tight. The maximum observed ratio was three, in contrastédobund of N| = 7 given by the theorem. In addition,
the bound in Theorem 9 does not depend on the coloring nuiibigthese results show that the worst-case ratio does
tend increase with coloring number.

We also summarized our results by graph density in Table .aWlerage, maximum, and mode of the worst-case
ratios is uniformly increasing as the graph density inaesa¥hese results reinforce the intuition provided by Taeor
10 that the McCormick relaxation becomes relatively woim®jgared to the convex hull relaxation for denser graphs.

We next consider multilinear functions having terms withrenthan two variables defined ovgr«]. We con-
ducted some numerical experiments to see how the convexdialation compares to two weaker relaxations: (1)
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Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio
density | avg max mode(%) | avg max mode(%)

0.0-0.1| 0.000 0.000 0.000(100) 0.000 0.000  0.000 (100
0.1-0.2| 1.000 1.000 1.000(100) 1.000 1.000 1.000 (100
0.2-0.3| 1.049 1.500 1.000(90.1) 1.090 2.000 1.000 (83.5
0.3-0.4| 1.365 1500 1.500(67.6) 1.544 2.000 1.500 (55.3
0.4-0.5| 1.494 1500 1.500(98.4) 1.758 2.250 2.000 (41.1
0.5-0.6 | 1.499 1.667 1.500(99.5) 1.859 2.250 2.000 (57.5
0.6-0.7 | 1.507 1.667 1.500(95.8) 1.918 2.500 2.000 (86.2
0.7-0.8| 1.542 1.667 1.500(74.9) 1.970 2.500 2.000 (63.1
0.8-0.9| 1.637 1.667 1.667(81.9) 2.032 3.000 2.000 (51.7
0.9-1.0| 1.717 1.750 1.750(60.1) 2.264 3.000 2.500 (57.5

Table 2 Maximum gap ratio for random graphs of size 7, summarized byityens

positive signs -- [1,2] positive signs -- [1,2]

Convex hull difference
Convex hull difference

5 10 15 20 5 10 15 20 25 20
Term-by-term convex hull difference McCormick difference

Fig. 2 Scatter plots comparing the term-by-term (left) and recersfeCormick (right) relaxation gaps to the convex hull reteoagap for
the functiong defined ovei1, 2]°.

therecursive McCormickelaxation, obtained by independently applying recurtiormick to each of the terms,
and (2) theterm-by-termrelaxation, obtained by using the concave and convex epgslof each of the terms. For
these computations, we again used the linear programs @7)8amno calculatechgap [¢](z) for a given pointz. The
term-by-term relaxation was calculated by using the foatiah of (7) and (8) for each product teiimdependently
Corollary 5 states that if > 0 and the coefficients on all terms are positive, the concapeupounding function
given by the term-by-term relaxation is equal to the conaaweslope. We are interested in seeing how the recursive
McCormick and term-by-term relaxations perform more galerAs an example, we consider the following function:

O(x) = T122T3T4T5 + T1T2XIT4 + T1X3TLTE + T2X3T5 + T12325 + X425 + X122,

which has multiple terms of different sizes, all with posgtcoefficients. We compare the term-by-term relaxation and
recursive McCormick relaxations to the convex hull reléombf the function over two different domaing;, 2]° and
[—1,2]°. Figure 2, for thef1,2]° case, shows scatter plots comparing the term-by-termatitaxgap to the convex
hull relaxation gap (on the left) and the McCormick relagatgap to the convex hull relaxation gap (on the right) for
5000 randomly generated points[in 2)°. Figure 3 shows the same plots for the domain, 2)°. In both cases, the
term-by-term relaxation appears significantly better tthenrecursive McCormick relaxation, since in the latterecas
the distribution of the points is shifted significantly awfaym the ideal case of the line with slope one.

The most interesting of these plots is the term-by-termtecalot for the case of domaift,2])° in Figure 2.
Recall that wherf > 0, Corollary 5 applies and hence we know the term-by-term upgaxation yields the concave
envelope. However, we have no theory suggesting the oggaplshould be close to the convex hull gap. Nevertheless,
the term-by-term scatter plot has the same form as the sqéddiis in Figure 1 for the bilinear case, in fact with an
even tighter band, suggesting that such a result might holcbntrast, as we would expect based on the examples in
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positive signs -- [-1,2] positive signs -- [-1,2]

80 [ e 80 [

a0 b

Convex hull difference
Convex hull difference
5

20 40 80 80 20 40 60 80 100
Term-by-term convex hull difference McCormick difference

Fig. 3 Scatter plots comparing the term-by-term (left) and recersfeCormick (right) relaxation gaps to the convex hull reteotagap for
the functiong defined ovef—1, 2]5.

Section 2.3, the results for the recursive McCormick refiaxedo not suggest any such bound. Furthermore, in Figure
3 with domain|[—1, 2], Theorem 5 does not apply, and thus it is not surprising trateérm-by-term relaxation does
significantly worse than the convex hull.

To further explore the strength of the term-by-term releratvhen? > 0 and all coefficients are positive, we
generated 200 random multiterm multilinear functions ofieision 6, and estimated the maximum ratio of term-by-
term gap to convex hull gap for each of these. We estimatsdtdltio by calculating the ratio at 50000 random points
in the domairf0, 1]° and taking the maximum of these. The largest estimate of thémum ratio we found was about
1.21. This experiment, along with images like Figure 2, $easlto the following conjecture.

Conjecture 1For multilinear functions with positive coefficients defthever[¢, u] with ¢ > 0, the ratio between the
term-by-term gap and the convex hull gap is uniformly bowuhdleove by a constant.

5 Concluding remarks

We have studied the relationship between the convex hukagion of a multilinear function and the McCormick
relaxation, obtained by relaxing individual bilinear texrfror a single product term of possibly more than two vaeisbl
we found a new condition when these relaxations are equiabat found that in general the McCormick relaxation
can be significantly larger than the convex hull relaxatteor.bilinear functions, we demonstrated that the gap betwee
the upper and lower bounding functions from the McCormidkxation is always within a constant factor of the gap
between the concave and convex envelopes. Moreover, thenmexrelative difference decreases as the coloring
number of the associated graph decreases. These resuitgwth a result showing that the difference in these gaps is
always smaller for sparser graphs, suggest that the extefibfrom using a relaxation stronger than the McCormick
relaxation is likely to be most beneficial when the assodigtaph is dense.

This work leaves some additional theoretical and companatiquestions open. On the theoretical side, we be-
lieve that the approximation ratio we have provided for gahkilinear functions (having both positive and negative
coefficients on the terms) is not as tight as possible. We hése conjectured that using the convex hull of every
term in a multilinear function having positive coefficiemts all terms will yield an approximation with a gap that is
within a constant factor of the gap between the concave angegcenvelopes. This would be a generalization of our
result for bilinear functions. On the computational sideyould be interesting to build on the ideas of [2] and use
the insights gained from this paper to devise a relaxatigrageh for multilinear functions that yields some of the
potential improvement in relaxation quality that the conbell formulation yields while keeping the relaxation size
manageable.
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