
Technical Report, UW-Madison

Some Results on the Strength of Relaxations of Multilinear Functions

James Luedtke · Mahdi Namazifar · Jeff Linderoth

March 9, 2012

Abstract We study approaches for obtaining convex relaxations of global optimization problems containing multilin-

ear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that

are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the prob-

lem to contain only bilinear terms and then relaxes each termindependently. We show that for a multilinear function

having a single product term, this approach yields the convex and concave envelopes if the bounds on all variables

are symmetric around zero. We then review and extend some results on conditions when the concave envelope of a

multilinear function can be written as a sum of concave envelopes of its individual terms. Finally, for bilinear functions

we prove that the difference between the concave upper bounding and convex lower bounding functions obtained from

the McCormick relaxation approach is always within a constant of the difference between the concave and convex en-

velopes. These results, along with numerical examples we provide, give insight into how to construct strong relaxations

of multilinear functions.

Keywords Global optimization· Bilinear function· Multilinear function

1 Introduction

The construction of convex lower bounding and concave upperbounding functions for nonconvex functions plays a

critical role in algorithms for globally solving nonconvexoptimization problems. In this work, we focus on multilinear

functionsφ : [ℓ, u] → R, where

φ(x) =
∑

t∈T

at
∏

j∈Jt

xj , (1)
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and[ℓ, u] = {x ∈ R
n | ℓ ≤ x ≤ u}. Specifically, we are interested in comparing the strength of relaxations of the graph

of such a function, given by the set

X
def
= {(x, z) ∈ [ℓ, u]× R | z = φ(x)}.

An important special case is whenφ is abilinear function, i.e.,|Jt| ≤ 2 for all t ∈ T .

Whenφ(x) consists of a single bilinear term, McCormick [14] proposedto relax the setB = {(x1, x2, z) ∈

[ℓ1, u1]× [ℓ2, u2]× R | z = x1x2} with the following inequalities, which we refer to as the McCormick inequalities:

z ≥ u2x1 + u1x2 − u1u2, z ≥ ℓ2x1 + ℓ1x2 − ℓ1ℓ2, (2a)

z ≤ u2x1 + ℓ1x2 − ℓ1u2, z ≤ ℓ2x1 + u1x2 − u1ℓ2. (2b)

Al-Khayyal and Falk [1] showed that the convex hull ofB is described by (2). For more general factorable noncon-

vex functions, including multilinear functions of the form(1), McCormick proposed a recursive procedure in which

additional variables and constraints are added to obtain a formulation of the problem having only bilinear equations

which are subsequently relaxed using (2). The resulting relaxation, which we refer to as theMcCormick relaxation,

has formed a basis for the relaxations used in many global optimization solution approaches, such as implemented in

BARON [21,24], Couenne [3], and [23].

The strongest possible relaxation ofX, its convex hullconv(X), has been shown to be a polyhedron with the

following characterization [6–8,19,22]:

conv(X) = Proj
x,z

{

(x, z, λ) ∈ [ℓ, u]× R×∆2n | x =

2n∑

j=1

λjx
j , z =

2n∑

j=1

λjφ(x
j)
}

, (3)

wherex1, x2, . . . x2
n

are the vertices of[ℓ, u], and∆2n is the2n-dimensional simplex. In general, the McCormick

relaxation may strictly contain the convex hull, leading toweaker relaxation bounds. On the other hand, direct use

of the convex hull characterization (3) to create a convex relaxation ofX is limited by the exponential growth in the

number of variables. Thus, a natural idea is to seek relaxations ofX that may be tighter than what is obtained with the

standard McCormick approach, but which are not as prohibitively large as the full convex hull approach. A simple idea

along these lines is to use the formulation (3) oversubsetsof the variables chosen small enough to keep the size of the

relaxation tractable. This idea has already been explored with promising results by Bao, Sahinidis, and Tawarmalani

[2], where procedures to find valid inequalities based on thedual formulation of (3) are investigated. We also refer the

reader to the Ph.D. thesis of the second author [17] for a moredetailed exposition of some of the results presented in

this paper.

Since using (3) in any form is likely to increase the computational burden in solving the relaxation, it is important to

understand when this extra work is most likely to yield significant benefits in relaxation quality. To this end, we explore

conditions under which the convex hull formulation yields nothing more than McCormick relaxation approach, and,

for the case of bilinear functions, we provide bounds on how much worse the McCormick relaxation can be. To our

knowledge, this is the first result of this type in the global optimization literature.

We begin in§2 with the case in whichφ consists of single product term(|T | = 1). We first review a result of

Ryoo and Sahinidis [20] that shows the McCormick relaxationis equivalent to the convex hull when the bounds on the

variables are all[0, 1]. We then provide the new result that this also holds when the bounds are symmetric about zero,

i.e.,xi ∈ [−ui, ui]. Finally, we provide examples that when these conditions donot hold, the difference between the

convex hull and McCormick relaxations can be arbitrarily large.

In §3, we consider the case whenφ can have multiple terms. We begin in§3.1 by reviewing an existing result

of Meyer and Floudas [15] which states that theconcaveenvelope ofφ overx ∈ [0, 1]n can be obtained as the sum
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Fig. 1 Scatter plots of McCormick gap vs. convex hull gap for random points in [0, 1]7 for a bilinear function having positive coefficients
(left) and mixed-sign coefficients (right).

of concave envelopes of the individual terms ofφ when the coefficients on each term are positive. We show that this

result extends tox ∈ [ℓ, u] providedℓ ∈ R
n
+, and to general[ℓ, u] if φ is bilinear. Note that these results do not say

anything about how theconvex lower bounding functionobtained from the McCormick relaxation compares to the

convex envelope.

In §3.2 we focus on bilinear functions of the formb(x) =
∑

{i,j}∈E aijxixj , whereE is a set of unordered pairs

of distinct elements ofN = {1, . . . , n}, and obtain results that provide insight into the strength of the McCormick

upperand lower bounding functions, relative to the concave and convex envelopes. To motivate these results, consider

an experiment comparing the McCormick relaxation to the convex hull for the following two bilinear functions defined

onx ∈ H = [0, 1]7:

b1(x) =x1x2 + x1x3 + x1x4 + x1x5 + x1x6 + x2x3 + x2x4 + x2x5 + x3x4

+ x3x5 + x4x5 + x4x6 + x5x7 + x6x7,

b2(x) =x1x2 − x1x3 + x1x4 + x1x5 + x1x6 + x2x3 − x2x4 − x2x5 + x3x4

+ x3x5 − x4x5 + x4x6 − x5x7 + x6x7.

For each of these functions, we randomly generated 5000 points uniformly in H and, for each pointxk, calcu-

lated the difference between the concave and convex envelopes ofb at xk, denotedchgapH [b](xk), and also calcu-

lated the difference between the upper and lower bounds ofb(xk) defined by the McCormick relaxation, denoted

mcgapH [b](xk). (These terms are formally defined in§3.2.) We then construct a scatter plot, showin in Fugre 1, of

the points(mcgapH [b](xk), chgapH [b](xk)), k = 1, . . . , 5000. Because the McCormick relaxation is weaker than the

convex hull, it always holds thatmcgapH [b](x) ≥ chgapH [b](x) and so all of these points lie below the line of slope

one passing through the origin. The distance of the points from this line provides a graphical illustration of the qual-

ity of the McCormick relaxation at each point. A surprising feature of these plots is that all points lie above a line

having smaller slope, suggesting that there exists a constant Cb ≥ 1, depending on the bilinear functionb, such that

mcgapH [b](x)/ chgapH [b](x) ≤ Cb holds for allx ∈ H. In §3.2, we prove that this is indeed the case, and furthermore

we provide bounds on the approximation constantCb. If aij > 0 for all {i, j} ∈ E, this constant is always less than

2, and decreases with the coloring number of the graphG = (N,E). This yields, as a special case, the result of [5,9]

that the McCormick relaxation is equivalent to the convex hull whenG is bipartite. When the coefficients are not all

positive, our bound onCb is O(n). We also show that for any bilinear function, as terms are removed the difference

between the convex hull and McCormick relaxation gaps decreases, suggesting that the improvement in relaxation

quality by using the convex hull formulation will be more significant when the graphG is denser.

In §4 we present numerical examples that show our results are tight, and also provide insights into the gap between

these relaxations for cases where our results do not apply. We make some concluding remarks in§5.
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Notation: Given a functionf : D → R, the concave envelope off overD, writtencavD[f ], is the minimum concave

upper bounding function off onD. That is,cavD[f ](x) ≥ f(x) for all x ∈ D, and ifg : D → R is any other concave

function with g ≥ f on D, theng ≥ cavD[f ]. Similarly, the convex envelope off overD, written vexD[f ], is the

maximum convex lower bounding function off on D. We let0 and1 denote vectors of all zeros and all ones, and

ei be a vector of all zeros except theith component which has value1. The lengths of0,1, andei will be clear from

context (but are usually alln). We letH = [0,1] be the unit hypercube. Foru ∈ R
n, we defineDiag(u) to be then×n

diagonal matrix withDiag(u)ii = ui.

2 Recursive McCormick relaxation of a single multilinear term

In this section, we consider a multilinear function consisting of a single term,f(x) =
∏n

j=1 xj . Specifically, we

compare relaxations of set

X[ℓ,u] = {(x, y1) ∈ [ℓ, u]× R | y1 = f(x)}.

We consider cases in which arecursive McCormick relaxation, constructed by recursively applying the McCormick

relaxation to products of pairs of variables, is as strong asconv(X).

2.1 Preliminaries

We first formally define the recursive McCormick relaxation of the setX[ℓ,u]. This relaxation is referred to as arecur-

sive Arithmetic Intervalin [20]. First, for fixed intervals[ℓ1, u1] and[ℓ2, u2], define the setMC[ℓ1,u1]×[ℓ2,u2] to be the

set of(y, x1, x2) ∈ R× [ℓ1, u1]× [ℓ2, u2] that satisfy the McCormick inequalities (2):

y ≥ u2x1 + u1x2 − u1u2, y ≥ ℓ2x1 + ℓ1x2 − ℓ1ℓ2,

y ≤ u2x1 + ℓ1x2 − ℓ1u2, y ≤ ℓ2x1 + u1x2 − u1ℓ2.

Now supposeℓ, u ∈ R
n with ℓ ≤ u. A relaxation of this nonconvex setX[ℓ,u] can be constructed in a higher-

dimensional space by introducing variablesy2, . . . , yn that satisfyyi = xiyi+1 for i = 1, . . . , n − 1 andyn = xn

and then relaxing these bilinear constraints with the McCormick inequalities. This leads to a “recursive” McCormick

relaxation ofX[ℓ,u] which is the polytope defined by:

RMC
(
X[ℓ,u]

)
=

{

(x, y) ∈[ℓ, u]× R
n | yn = xn,

(yi, xi, yi+1) ∈ MC[ℓi,ui]×[ℓ̃i+1,ũi+1]
, i = 1, . . . , n− 1

}

whereℓ̃n
def
= ℓn andũn

def
= un andℓ̃i = min{ũi+1ui, ũi+1ℓi, ℓ̃i+1ui, ℓ̃i+1ℓi} andũi = max{ũi+1ui, ũi+1ℓi, ℓ̃i+1ui, ℓ̃i+1ℓi}

are implied lower and upper bounds onyi for i = n−1, . . . , 1. The variableyn could be eliminated from the description

of RMC
(
X[ℓ,u]

)
, but we include it for notational convenience.

Ryoo and Sahinidis [20] proved the following result.

Theorem 1 ([20]) Let f(x) =
∏n

i=1 xi. The recursive McCormick relaxation describes the convex hull of f over the

unit hypercube, i.e.,Proj(x,y1) (RMC(XH)) = conv(XH).

As observed in [20], whenℓ = 0, the assumption thatu = 1 is without loss of generality; i.e., we can show the

same result holds forf(x) over [0, u].

Corollary 1 Proj(x,y1)

(
RMC(X[0,u])

)
= conv(X[0,u]).
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Proof We only need to proveProj(x,y1)

(
RMC(X[0,u])

)
⊆ conv(X[0,u]). Let (x′, y′1) ∈ Proj(x,y1)

(
RMC(X[0,u])

)
,

y1 =
(∏n

i=1 ui
)−1

y′1, andDu = Diag(u). We claim that
(
D−1

u x′, y1
)
∈ Proj(x,y1) (RMC(XH)). Clearly,D−1

u x′ ∈

H. Let y′2, . . . , y
′
n be such that(x′, y′) ∈ RMC(X[0,u]) and letyi = y′i

(∏n
j=i uj

)−1
, i = 1, . . . , n. Then, it is easy

to check that(D−1
u x′, y) ∈ RMC(XH). Then, because(D−1

u x′, y1) ∈ Proj(x,y1) (RMC(XH)) Theorem 1 implies

there existsλ ∈ ∆2n such that
∑

k λk(x
k, yk) = (D−1

u x′, y1) wherexk, k = 1, . . . , 2n are the vertices ofXH and

yk = f(xk). This impliesx′ =
∑

k λkDux
k, andy′ =

∑

k λkf(x
k)

∏n
i=1 ui. SinceDux

k ∈ [0, u] andf(Dux
k) =

f(xk)
∏n

i=1 ui for all k this implies(x′, y′) can be written as a convex combination of points inX[0,u]. ⊓⊔

2.2 Symmetric bounds

We now show another, somewhat surprising, case where the recursive McCormick relaxation defines the convex hull of

a single multilinear term. Specifically, we show that the tworelaxations are the same if the bounds onx are symmetric

about zero, i.e.,x ∈ [−u, u] for someu ∈ R
n
+. We begin with the case in whichx ∈ [−1,1]. First observe that in this

case, the implied bounds onyi for i = 1, . . . , n are [l̃i, ũi] = [−1, 1]. Consequently, the conditions(yi, xi, yi+1) ∈

MC[−1,1]2 in the definition ofRMC(X[−1,1]) have the form

yi ≥ −xi − yi+1 − 1, yi ≥ xi + yi+1 − 1,

yi ≤ xi − yi+1 + 1, yi ≤ −xi + yi+1 + 1,

for i = 1, . . . , n− 1.

The result is based on the following characterization of theextreme points ofRMC(X[−1,1]).

Theorem 2 If (x, y) is an extreme point ofRMC(X[−1,1]), then(x, y) ∈ {−1, 1}2n.

Proof For any(c, d) ∈ R
2n, we show that the linear program

max
(x,y)∈RMC(X[−1,1])

cx+ dy (4)

has an optimal solution(x∗, y∗) ∈ {−1, 1}2n, which establishes the claim.

For z ∈ [−1, 1] andt ∈ N = {1, . . . , n}, define

ft(z) = max
xt,...,xn
yt,...,yn

n∑

i=t

cixi +

n∑

i=t

diyi

s.t.(yi, xi, yi+1) ∈ MC[−1,1]2 , i = t, . . . , n− 1,

yt = z, xn ∈ [−1, 1].

Thenft(z) satisfies the following recursive relationship fort = 1, . . . , n− 1:

ft(z) = dtz + max
(xt,yt+1)

{
ctxt + ft+1(yt+1)

∣
∣ (z, xt, yt+1) ∈ MC[−1,1]2 .

}
(5)

We show by induction thatft(z) is convex for allt. First, fn(z) = dnz + |cn|. Now assumeft+1(z) is convex. It

follows that the maximum in the expression forft(z) given in (5) is attained at an extreme point of the the polyhedron

Q(z), given by the set of(xt, yt+1) ∈ [−1, 1]2 that satisfy

−xt − yt+1 ≤ 1 + z, xt + yt+1 ≤ 1 + z,

−xt + yt+1 ≤ 1− z, xt − yt+1 ≤ 1− z.
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It is easy to check that for anyz ∈ [−1, 1] the extreme points ofQ(z) are{(−1,−z), (1, z), (−z,−1), (z, 1)}. Therefore,

ft(z) = dtz +max
{
ct + ft+1(z),−ct + ft+1(−z),−ctz + ft+1(−1), ctz + ft+1(1)

}
.

Each of the functions taken in themax is a convex function ofz, showing thatft(z) is convex.

Finally, observe that (4) is equivalent tomaxy1∈[−1,1] f1(y1). As f1(y1) is convex, there exists a solution to this

with y∗1 ∈ {−1, 1}. Proceeding inductively, assume there is an optimal solution to (5) with(x∗i , y
∗
i+1) ∈ {−1, 1}2 for

i = 1, . . . , t− 1. Fort, recall that for any fixedz, (5) has an extreme point optimal solution among the set(xt, yt+1) ∈

{(−1,−z), (1, z), (−z,−1), (z, 1)}. Thus, usingz = y∗t ∈ {−1, 1} (from the induction hypothesis) shows there exists

x∗t ∈ {−1, 1} andy∗t+1 ∈ {−1, 1} optimal for (5). ⊓⊔

Theorem 3 Let f(x) =
∏n

i=1 xi. The recursive McCormick relaxation describes the convex hull of f over [−1,1],

i.e.,Proj(x,y1)

(
RMC(X[−1,1])

)
= conv(X[−1,1]).

Proof We only need to proveProj(x,y1)

(
RMC(X[−1,1])

)
⊆ conv(X[−1,1]). By Theorem 2, if(x, y) is an extreme

point of RMC(X[−1,1]) then(x, y) ∈ {−1, 1}2n. For eacht, it is easily checked that if(yt, xt, yt+1) ∈ MC[−1,1]2 ,

xt, yt ∈ {−1, 1}, thenyt = xtyt+1, and thereforey1 =
∏n

i=1 xi. Thus,(x, y1) ∈ X[−1,1]. This is sufficient to prove

the result, since this shows that every point inProj
(
RMC(X[−1,1])

)
can be written as a convex combination of points

in X[−1,1]. ⊓⊔

Using arguments identical to those in the proof of Corollary1 yields the following generalization.

Corollary 2 Letu ∈ R
n
+. ThenProj(x,y1)

(
RMC(X[−u,u])

)
= conv(X[−u,u]).

2.3 Worst-case examples

We have seen that when eitherℓ = 0 or ℓ = −u, the recursive McCormick relaxation off(x) =
∏n

i=1 xi is as good

as the convex hull relaxation. We now show that when both of these conditions are violated, the recursive McCormick

relaxation can be arbitrarily worse than the convex hull. Wemeasure the relative quality of these relaxations by com-

paring the distance between the minimum and maximum allowable values fory at a pointx. Specifically, for a given

D = [ℓ, u], we define

chgapD[f ](x) = max
{
y | (x, y) ∈ conv(XD)

}

︸ ︷︷ ︸

=cavD [f ](x)

−min
{
y | (x, y) ∈ conv(XD)

}

︸ ︷︷ ︸

=vexD[f ](x)

rmcgapD[f ](x) = max
{
y | (x, y) ∈ RMC(XD)

}

︸ ︷︷ ︸

def
= rmcuD[f ](x)

−min
{
y | (x, y) ∈ RMC(XD)

}

︸ ︷︷ ︸

def
= rmclD[f ](x)

.

The relationrmcgapD[f ](x) ≥ chgapD[f ](x) always holds, and by Corollaries 1 and 2 equality holds when either

ℓ = 0 or ℓ = −u. We present examples that show thatrmcgapD[f ](x) can be arbitrarily larger thanchgapD[f ](x).

First, letDu = [1, u]3 for someu > 1 and consider the point̂x = (u+1
2 , u, 1). The only wayx̂ can be written

as a convex combination of vertices ofDu is x̂ = 1
2 (1, u, 1) +

1
2 (u, u, 1). Thus,vexDu

[f ](x̂) = cavDu
[f ](x̂) so

chgapDu
[f ](x̂) = 0. Next consider the recursive McCormick relaxation off over Du. It is possible to check that

rmcuDu
[f ](x̂) = u2 + 1−u

2 andrmclDu
[f ](x̂) = u+ u−1

2 , and therefore

rmcgapDu
[f ](x̂) = rmcuDu

[f ](x̂)− rmclDu
[f ](x̂) = u2 − u > 0.

SincechgapDu
[f ](x̂) = 0, this example shows that, if we letu → ∞, the difference in relaxation quality between the

convex hull and recursive McCormick relaxations can be arbitrarily large even for fixedn = 3.
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Now, letDn = [−2, 2]n−2 × [0, 2] × [−2, 2], and consider the point̂x = (2, . . . , 2, 0, 0, 2). Again, the only way

x̂ can be written as a convex combination of vertices ofDn is x̂ = 1
2 (2, . . . , 2,−2, 0, 2) + 1

2 (2, . . . , 2, 2, 0, 2) and

hencevexDn
[f ](x̂) = cavDn

[f ](x̂) sochgapDn
[f ](x̂) = 0. On the other hand, if we consider the recursive McCormick

relaxation off overDn, it can be verified that forn ≥ 3, rmcuDn
[f ](x̂) = 2n andrmclDn

[f ](x̂) = −2n and hence

rmcgapDn
[f ](x̂) = 2n+1. Thus, by lettingn → ∞, we see that even if the boundsℓ andu do not grow, the difference

in relaxation quality between the convex hull and recursiveMcCormick relaxations can be arbitrarily large.

3 General multilinear functions

We now consider general multilinear functions of the form

φ(x) =
∑

t∈T

at
∏

j∈Jt

xj , (6)

defined overx ∈ [ℓ, u], and study concave upper bounding and convex lower boundingfunctions ofφ over [ℓ, u]. In

Section 3.1 we focus on concave envelopes, and study cases inwhich the concave envelope ofφ can be written as a

sum of concave envelopes of the individual terms. Many of these results follow from results in [6,15], but we review

them since they are necessary in what follows. Our main results are in Section 3.2, where we show that for bilinear

functions (i.e.,|Jt| ≤ 2 ∀t), the gap between the McCormick upper and lower bounding functions ofφ is uniformly

within a constant of the gap between the concave and convex envelopes ofφ.

Recall that the concave and convex envelopes ofφ have the following representations [19,22]:

cav[ℓ,u][φ](x) = max
λ

{ 2n∑

k=1

λkφ(x
k)

∣
∣
∣

2n∑

k=1

λkx
k = x, λ ∈ ∆2n

}

(7)

vex[ℓ,u][φ](x) = min
λ

{ 2n∑

k=1

λkφ(x
k)

∣
∣
∣

2n∑

k=1

λkx
k = x, λ ∈ ∆2n

}

(8)

wherexk, k = 1, . . . , 2n are the vertices of[ℓ, u].

3.1 Concave envelope of a sum of multilinear terms

The first result is an almost immediate consequence of [6] andhas been explicitly proved in [15].

Theorem 4 ([15]) Letφ : H → R be as defined in(6), and assume thatat > 0 for all t ∈ T . Also letft(x) =
∏

j∈Jt
xj

for t ∈ T . Then the concave envelope ofφ is given by the sum of concave envelopes offt:

cavH [φ](x) =
∑

t∈T

at cavH [ft](x) ∀x ∈ H.

The conditionat > 0 for all t ∈ T is necessary, even ifφ is a bilinear function. Example 2 in Section 3.2.3 provides

an example of a bilinear function with a single negativeat and anx ∈ H at which the sum of concave envelopes of the

individual bilinear terms is strictly larger than the concave envelope of the bilinear function.

Theorem 4 can be generalized to the casex ∈ [ℓ, u], providedℓ ≥ 0.

Theorem 5 Let ℓ, u ∈ R
n satisfy0 ≤ ℓ ≤ u and letφ : [ℓ, u] → R be as defined in(6), and assume thatat > 0 for all

t ∈ T . Also letft(x) =
∏

j∈Jt
xj for t ∈ T . Then the concave envelope ofφ over [ℓ, u] is given by the sum of concave

envelopes offt:

cav[ℓ,u][φ](x) =
∑

t∈T

at cav[ℓ,u][ft](x) ∀x ∈ [ℓ, u].
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Proof Defineφ′ : H → R by

φ′(x′) = φ
(
Diag(u− ℓ)x′ + ℓ

)
=

∑

t∈T

atft
(
Diag(u− ℓ)x′ + ℓ

)

=
∑

t∈T

at
∑

k∈Kt

a′kf
′
k(x

′)

where the functionsf ′k have the formf ′k(x
′) =

∏

j∈Jk
x′j . Also, a′k ≥ 0 since each is a product ofℓj and(uj − ℓj)

terms andℓj ≥ 0. Now, letφ′
t(x

′) = ft
(
Diag(u− ℓ)x′ + ℓ

)
=

∑

k∈Kt
a′kf

′
k(x

′) for t ∈ T . Applying Theorem 4 twice

then yields

cavH [φ′](x′) =
∑

t∈T

at
∑

k∈Kt

a′k cavH [f ′k](x
′) =

∑

t∈T

at cavH [φ′
t](x

′) ∀x′ ∈ H. (9)

Next, becauseφ′
t(x

′) = ft(Diag(u − ℓ)x′ + ℓ) andx ∈ H if and only if (Diag(u − ℓ)x′ + ℓ) ∈ [ℓ, u], it is not hard to

see that

cavH [φ′
t](x

′) = cav[ℓ,u][ft](Diag(u− ℓ)x′ + ℓ), ∀x′ ∈ H. (10)

Now, let x ∈ [ℓ, u] and letx′ = Diag(u − ℓ)−1(x − ℓ) andy′ = cavH [φ′](x′). Then there existsλ ∈ ∆2n such

that
∑

k λkx̃
k = x′ and

∑

k λkφ
′(x̃k) = y′, wherex̃k, k = 1, . . . , 2n are the vertices ofH. Then, observing that

xk = Diag(u− ℓ)x̃k + ℓ, for k = 1, . . . , 2n are the vertices of[ℓ, u] we have

2n∑

k=1

λkx
k =

2n∑

k=1

λk

(

Diag(u− ℓ)x̃k + ℓ
)

= Diag(u− ℓ)x′ + ℓ = x

and soλ is feasible to the linear program (7) definingcav[ℓ,u][φ]. Also, the objective value ofλ in (7) is

2n∑

k=1

λkφ(x
k) =

2n∑

k=1

λkφ
′(x̃k) = y′ =

∑

t∈T

at cavH [φ′
t](x

′) =
∑

t∈T

at cav[ℓ,u][ft](x)

where the second-to-last equality follows from (9) and the last equality follows from (10). This proves

cav[ℓ,u][φ](x) ≥
∑

t∈T

ak cav[ℓ,u][ft](x)

and completes the proof as the reverse inequality is immediate. ⊓⊔

The following example shows that for general multilinear functions, the conditionℓ ≥ 0 is necessary.

Example 1Let D = [−1, 1] × [0, 1]3 andφ(x) = f1(x) + f2(x) wheref1(x) = x1x2x3 andf2(x) = x2x3x4, and

consider the point̂x = (−1, 1/3, 1/3, 1/3). For this example, it is easy to verify by solving (7) thatcavD[φ](x̂) = 0.

In addition, (7) can be used to findcavD[f1](x̂) = 0 andcavD[f2](x̂) = 1/3, and thuscavD[φ](x̂) < cavD[f1](x̂) +

cavD[f2](x̂).

For bilinear functions, Theorem 4 can be generalized to allow x ∈ [ℓ, u] for any ℓ ≤ u. The arguments are fairly

standard, but we provide a proof for completeness.

Corollary 3 Let b(x) =
∑

{i,j}∈E aijxixj for x ∈ [ℓ, u], whereℓ, u ∈ R
n andE is a set of{i, j} pairs, and assume

aij > 0 for all {i, j} ∈ E. Then the concave envelope ofb is equal to the termwise McCormick upper bounding

function:

cav[ℓ,u][b](x) =
∑

{i,j}∈E

aij min{ujxi + ℓixj − ℓiuj , ℓjxi + uixj − uiℓj} ∀x ∈ [ℓ, u].
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Proof Defineb′ : H → R by

b′(x′) = b
(
Diag(u− ℓ)x′ + ℓ

)
=

∑

{i,j}∈E

aij
(
(ui − ℓi)x

′
i + ℓi

) ((
uj − ℓj

)
x′j + ℓj

)

= f ′(x′) + L(x′),

wheref ′(x′) =
∑

{i,j}∈E aij (ui − ℓi)
(
uj − ℓj

)
x′ix

′
j is a bilinear function having positive coefficients, andL(x′) =

∑

{i,j}∈E aij
[
ℓj(ui − ℓi)x

′
i + ℓi(uj − ℓj)x

′
j + ℓiℓj

]
is an affine function ofx′. Thus,

cavH [b′](x′) = cavH [f ′](x′) + L(x′)

=
∑

{i,j}∈E

aij (ui − ℓi)
(
uj − ℓj

)
min{x′i, x

′
j}+ L(x′)

where the first equation follows becauseL is an affine function, and the second equation follows from Theorem 4

and from the fact that forf(x1, x2) = x1x2, cav[0,1]2 [f ](x1, x2) = min{x1, x2}. By a simple scaling argument

(x′ ∈ H ⇔ Diag(u− ℓ)x′ + ℓ ∈ [ℓ, u]) it holds that

cavH [b′](x′) = cav[ℓ,u][b](Diag(u− ℓ)x′ + ℓ).

Now, letx ∈ [ℓ, u] and letx′ = Diag(u− ℓ)−1(x− ℓ) ∈ H. Then,

cav[ℓ,u][b](x) = cavH [b′](x′)

=
∑

{i,j}∈E

aij (ui − ℓi)
(
uj − ℓj

)
min{x′i, x

′
j}+ L(x′)

=
∑

{i,j}∈E

aij min{ujxi + ℓixj − ℓiuj , ℓjxi + uixj − uiℓj}

where the last equation follows because for each{i, j} ∈ E,

(ui − ℓi)
(
uj − ℓj

)
min{x′i, x

′
j}+ ℓj(ui − ℓi)x

′
i + ℓi(uj − ℓj)x

′
j + ℓiℓj

= min{(uj − ℓj)(xi − ℓi), (ui − ℓi)(xj − ℓj)}+ ℓj(xi − ℓi) + ℓi(xj − ℓj) + ℓiℓj

= min{ujxi + ℓixj − ℓiuj , ℓjxi + uixj − uiℓj}.

⊓⊔

3.2 Approximation results for bilinear functions

In this section, we study the strength of the McCormick relaxation for bilinear functions of the form:

b(x) =
∑

{i,j}∈E

aijxixj (11)

for x ∈ H, whereE is a subset of unordered pairs of distinct indices inN = {1, . . . , n}. Specifically, the McCormick

upper bounding function is

mcuH [b](x) = max
(x,y)∈P

∑

{i,j}∈E

aijyij
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and the McCormick lower bounding function is

mclH [b](x) = min
(x,y)∈P

∑

{i,j}∈E

aijyij

whereP = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤ xj , ∀{i, j} ∈ E} is the polyhedron obtained

by using the McCormick inequalities to bound the bilinear termsxixj .

We are interested in the quality of the McCormick approximation as compared to the relaxation given by the convex

and concave envelopes ofb. We therefore define

mcgapH [b](x) = mcuH [b](x)−mclH [b](x), and

chgapH [b](x) = cavH [b](x)− vexH [b](x).

mcgapH [b](x) is a measure of the tightness of the McCormick relaxation ofb(x) at each pointx ∈ H = [0, 1]n, and

likewise forchgapH [b](x). In this section, we show that under certain conditions,mcgapH [b](x) is uniformly close to

chgapH [b](x).

We begin in Section 3.2.1 by reviewing some existing resultsand establishing some new results needed for proving

our main theorems. Then, in Section 3.2.2 we give our resultsfor the caseaij > 0 for all {i, j} ∈ E. In Section 3.2.3

we present our (weaker) results for the general case. Throughout this section we assumex ∈ H. However, all the

results can be generalized tox ∈ [ℓ, u] using arguments similar to those in the proof of Corollary 3.

We first introduce some new notation. For a graphG = (N,E), we letχ(G) be the coloring number ofG. Also,

whenG is associated with weightswe for e ∈ E, we definew(E′) =
∑

e∈E′ we for anyE′ ⊆ E. We also define

E+ = {e ∈ E | we > 0}, E− = E \ E+, and forE′ ⊆ E, w+(E′) =
∑

e∈E+∩E′ we andw−(E′) =
∑

e∈E−∩E′ we.

We letS = {S | S ⊆ N} be the set of all subsets ofN . For two setsS1, S2 ⊆ N , δ(S1, S2) = {e ∈ E | e has one

end inS1 and one end inS2}. For anyS ∈ S, we letδ(S) = δ(S,N \ S) andγ(S) = {e ∈ E | e has both ends inS}.

Finally, for i ∈ N , we letSi = {S ∈ S | i ∈ S} be the set of subsets that contain elementi.

3.2.1 Preliminaries

We first state two existing results that are required for our analysis.

Theorem 6 ([18]) LetP = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤ xj , ∀{i, j} ∈ E}. The extreme

points ofP are all {0, 1/2, 1}-valued.

In [18], Theorem 6 is proved for the case thatE is the set of edges of a complete graph, but the theorem is alsotrue

whenE is any subset of edges.

Theorem 7 ([13]) Consider any graphG = (N,E) having|N | even and weightswe for e ∈ E. There exists a matching

M ⊆ E, with

w(M) ≥
w(E)

|N | − 1
.

The following corollary is a slight strengthening of the simple result that there exists a cut with weight at least half

the weight of all edges in the graph (see, e.g., Theorem 5.1 in[16]). It is a slight improvement on a result in [4]. The

slight improvement is important for our results and can be obtained using arguments from [10] using Theorem 7 in

place of the (weaker) bound on the size of a matching used in [4]. (See also the discussion in [12]).
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Corollary 4 LetG = (N,E) be a graph with|N | even and weightswe for e ∈ E. Then there exist cutsC1, C2 ⊆ E in

G having

w(C1) ≥
1

2
w(E) +

∑

e∈E |we|

2(|N | − 1)
, (12)

w(C2) ≤
1

2
w(E)−

∑

e∈E |we|

2(|N | − 1)
. (13)

Proof By applying Theorem 7 using weightsw′
e = |we|, there exists a matchingM in the graph(N,E) with

∑

e∈M |we| ≥
∑

e∈E |we|/(|N | − 1). We construct a random cut̃C to be defined by the edges between the sets

S andN \ S which are generated as follows. For every edgee = {i, j} ∈ M , if we > 0 we assigni to S andj to

N \S with probability1/2 and assignj to S andi toN \S with probability1/2; if we ≤ 0 we assigni andj to S with

probability1/2 and assigni andj to N \ S with probability1/2. Thus, with probability1, every positive weight edge

in M is in the cutC̃ and every nonpositive weight edge inM is not in the cutC̃, but every node that was matched by

an edge inM has equal probability of being inS or N \ S. For every nodei that was not matched byM , we assigni

to S with probability1/2 and toN \ S with probability1/2. Thus, any edgee ∈ E \M has probability1/2 of being

in the cutC̃. Therefore, the expected weight of the cut is:

E[w(C̃)] = w+(M) +
1

2

∑

e∈E\M

we = w+(M) +
1

2
(w(E)− w+(M)− w−(M))

=
1

2
w(E) +

1

2
(w+(M)− w−(M))

=
1

2
w(E) +

1

2

∑

e∈M

|we| ≥
1

2
w(E) +

∑

e∈E |we|

2(|N | − 1)
.

This implies there exists a cutC1 that achieves at least the value of the expected weight of this random cut, proving

(12).

Existence of a cutC2 satisfying (13) is established with a nearly identical argument as forC1, with the exception

being that given a matchingM with
∑

e∈M |we| ≥
∑

e∈E |we|/(|N | − 1), a random cut̃C is constructed by placingi

andj in the same node set (S or N \ S with equal probability) ifw{i,j} > 0 and by placingi andj in different node

sets ifw{i,j} ≤ 0. ⊓⊔

This result can be strengthened further for graphs that havea small coloring number when all weights are nonneg-

ative.

Lemma 1 LetG = (N,E) be a graph withχ(G) even, and weightswe ≥ 0 for e ∈ E. Then there exist a cutC in G

with

w(C) ≥
1

2
w(E) +

1

2(χ(G)− 1)
w(E),

Proof Let χ = χ(G) and letS1, . . . , Sχ be a partition ofN such thatγ(Si) = ∅ for all i = 1, . . . , k. (I.e., these sets

define a coloring of sizeχ.) Define a complete graphG′ with verticesN ′ = {1, . . . , χ}, and definēwij = w(δ(Si, Sj))

for 1 ≤ i < j ≤ χ as the weights on the edges,E′, in G′. By definition,w̄(E′) = w(E). Applying Corollary 4 to the

graphG′, there exists a cutC′ in G′ with

w̄(C′) ≥
1

2
w̄(E′) +

1

2(χ− 1)
w̄(E′) =

1

2
w(E) +

1

2(χ− 1)
w(E).
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Now letC be the set of edges inE defined byC =
⋃

{i,j}∈C′ δ(Si, Sj). Sincew(C) = w̄(C′) andC is a cut inG, this

proves the result. ⊓⊔

Due to Theorem 6, vectorsx that are{0, 1/2, 1}-valued play an important role in our analysis. We therefore

determinemcgapH [b](x) and find bounds oncavH [b](x) andvexH [b](x) for such vectors.

Lemma 2 Letx ∈ R
n be{0, 1/2, 1}-valued and letT1 = {i ∈ N | xi = 1} andTf = {i ∈ N | xi = 1/2}. Then

mcgapH [b](x) = 1
2

∑

{i,j}∈γ(Tf )

|aij |.

Proof We first derive an expression formcgapH [b](x) for anyx ∈ H:

mcgapH [b](x) =
∑

{i,j}∈E

|aij |
(
min{xi, xj} −max{xi + xj − 1, 0}

)
. (14)

Indeed,

mcgapH [b](x) = mcuH [b](x)−mclH [b](x)

=
∑

{i,j}∈E+

aij min{xi, xj}+
∑

{i,j}∈E−

aij max{xi + xj − 1, 0}

−




∑

{i,j}∈E+

aij max{xi + xj − 1, 0}+
∑

{i,j}∈E−

aij min{xi, xj}





=
∑

{i,j}∈E

|aij |(min{xi, xj} −max{xi + xj − 1, 0})

Now, if {i, j} ∈ γ(T1), and hencei, j ∈ T1, thenmin{xi, xj} = max{xi + xj − 1, 0} = 1. If {i, j} ∈ δ(T1, Tf ), then

min{xi, xj} = max{xi + xj − 1, 0} = 1/2. If {i, j} ∈ γ(Tf ), thenxi = xj = 1/2 and hencemin{xi, xj} = 1/2 and

max{xi + xj − 1, 0} = 0. Finally, in all other cases for{i, j}, min{xi, xj} = max{xi + xj − 1, 0} = 0. Thus, the

result follows from (14). ⊓⊔

Lemma 3 Letx ∈ R
n be{0, 1/2, 1}-valued and letT1 = {i ∈ N | xi = 1} andTf = {i ∈ N | xi = 1/2}.

(a) If aij ≥ 0 for all {i, j} ∈ E, then

vexH [b](x) ≤ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf ))−

1

4(χ(G)− 1)
a(γ(Tf )). (15)

(b) If the weightsaij , {i, j} ∈ E have mixed-sign, then

vexH [b](x) ≤ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf ))−

∑

{i,j}∈γ(Tf )
|aij |

4(|N | − 1)
(16)

and

cavH [b](x) ≥ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf )) +

∑

{i,j}∈γ(Tf )
|aij |

4(|N | − 1)
. (17)
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Proof First, observe that for every vertexxk of H, if we let Sk = {i | xki = 1} thenb(xk) =
∑

{i,j}∈E aijx
k
i x

k
j =

∑

{i,j}∈γ(Sk)
aij = a(γ(Sk)). Thus, we can rewrite the LP (8) definingvexH [b](x) as follows:

vexH [b](x) = min
λ∈∆2n

∑

S∈S

a(γ(S))λS (18a)

s.t.
∑

S∈Si

λS = xi, i = 1, . . . , n. (18b)

Now, letC = δ(U1, U2) be a maximum weight cut in the subgraphGf of G induced by the nodesTf , whereU1

andU2 are the node sets defining the cut (U1 ∪ U2 = Tf andU1 ∩ U2 = ∅). LetS1 = T1 ∪ U1 andS2 = T1 ∪ U2, and

construct a solution to (18) by lettingλS1
= λS2

= 1/2, andλS = 0 otherwise. Clearly,λ ∈ ∆2n . Also, if i ∈ T1 then

i ∈ S1 ∩ S2, so
∑

S∈Si
λS = λS1

+ λS2
= 1 = xi. If i ∈ Tf , theni is in eitherS1 or S2, so

∑

S∈Si
λS = 1/2 = xi.

Otherwise,i is in neitherS1 nor S2, and hence (18b) is satisfied as well. Thus, becauseλ is one feasible solution to

(18),

vexH [b](x) ≤
1

2

(
a(γ(S1)) + a(γ(S2))

)
. (19)

Next, using the definitions ofS1 andS2, we observe that fori = 1, 2

a(γ(Si)) = a(γ(Ui)) + a(δ(T1, Ui)) + a(γ(T1)).

Then, observing thata(δ(T1, U1))+a(δ(T1, U2)) = a(δ(T1, Tf )) anda(γ(U1))+a(γ(U2)) = a(γ(Tf ))−a(δ(U1, U2)) =

a(γ(Tf ))− a(C) yields

a(γ(S1)) + a(γ(S2)) = 2a(γ(T1)) + a(δ(T1, Tf )) + a(γ(Tf ))− a(C). (20)

Now, if aij ≥ 0 for all {i, j} ∈ E, then because the coloring number ofGf is no larger than the coloring number ofG,

Lemma 1 implies

a(C) ≥
1

2
a(γ(Tf )) +

1

2(χ(G)− 1)
a(γ(Tf )).

Combining this with (20) and (19) yields part (a). When the weightsaij aren’t necessarily nonnegative, inequality (12)

of Lemma 4 yields

a(C) ≥
1

2
a(γ(Tf )) +

∑

{i,j}∈E |aij |

2(|N | − 1)
,

which, combined with (20) and (19), proves (16) for part (b).

The proof of (17) is similar to that of (16), except that we useinequality (13) in Lemma 4 to obtain a cutC2 such

that

a(C2) ≤
1

2
a(γ(Tf ))−

∑

{i,j}∈E |aij |

2(|N | − 1)
.

This cut can then be used to construct a feasible solution to the maximization problem definingcavH [b](x) with

objective value equal to the lower bound in (17). ⊓⊔

3.2.2 Bilinear functions with positive weights

In this section, we consider bilinear functions havingpositiveweights:aij > 0 for all {i, j} ∈ E. We first state the

main result.
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Theorem 8 LetG = (N,E) have a coloring of sizeχ, and letb(x) be a bilinear function of the form(11)with aij > 0

for all {i, j} ∈ E. Then ifχ is even,

mcgapH [b](x) ≤

(

2−
2

χ

)

chgapH [b](x) ∀x ∈ H,

and ifχ is odd,

mcgapH [b](x) ≤

(

2−
2

χ+ 1

)

chgapH [b](x) ∀x ∈ H.

Note that the theorem implies the result that for bipartite graphs (graphs with coloring of size two) the McCormick

envelopes provide the convex lower and upper envelopes, which was first proved in [5,9].

Proof We prove the case whereχ is even. The case whereχ is odd is an immediate consequence since if the coloring

numberχ(G) of a graph is odd, then it has an even coloring of sizeχ(G) + 1. LetK = 2− 2
χ . We need to prove

min
x∈H

(
K chgapH [b](x)−mcgapH [b](x)

)
≥ 0. (21)

Next, becauseaij > 0 for all {i, j} ∈ E, Theorem 4 applies and hencecavH [b](x) = mcuH [b](x). Using this, the

definitions ofchgapH [b] andmcgapH [b], and expanding the definition ofmclH [b](x), the minimization problem in

(21) is equivalent to:

min
(x,y)∈P

(

(K − 1) cavH [b](x)−K vexH [b](x) +
∑

{i,j}∈E

aijyij

)

whereP = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤ xj , ∀{i, j} ∈ E} is as defined in Theorem

6. Then, becausecavH [b](x) and− vexH [b](x) are concave functions, the above problem is a concave minimization

problem over a polytope, and hence achieves its minimum at anextreme point. Theorem 6 then implies that it is

sufficient to prove

K chgapH [b](x)−mcgapH [b](x) ≥ 0 (22)

for all {0, 1/2, 1} vectorsx.

Therefore, letx be an arbitrary{0, 1/2, 1}-valued vector, and letT1 = {i ∈ N | xi = 1} andTf = {i ∈ N | xi =

1/2}. Sinceaij > 0 for all {i, j} ∈ E, Lemma 2 then implies

mcgapH [b](x) =
1

2

∑

{i,j}∈γ(Tf )

|aij | =
1

2
a(γ(Tf )). (23)

Next, again using Theorem 4,

cavH [b](x) = mcuH [b](x) =
∑

{i,j}∈E

aij min{xi, xj}

= a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

2
a(γ(Tf )),

where the last equality follows becausemin{xi, xj} = 1 for {i, j} ∈ γ(T1), min{xi, xj} = 1/2 for {i, j} ∈ γ(Tf ) ∪

δ(T1, Tf ), andmin{xi, xj} = 0 otherwise. Combining this with (15) from Lemma 3 and (23) yields

chgapH [b](x) = cavH [b](x)− vexH [b](x) ≥
1

4

(

1 +
1

χ− 1

)

a(γ(Tf ))

=
χ

2(χ− 1)
mcgapH [b](x).
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Rearranging yields

mcgapH [b](x) ≤
2(χ− 1)

χ
chgapH [b](x) =

(

2−
2

χ− 1

)

chgapH [b](x)

and so indeed (22) holds. ⊓⊔

3.2.3 General bilinear functions

In this section, we consider bilinear functions that may have both positive and negative coefficients on the bilinear

terms. We first state the main result.

Theorem 9 LetG = (N,E) and letb(x) be a bilinear function of the form(11)overx ∈ H. Then if|N | is even,

mcgapH [b](x) ≤ (|N | − 1) chgapH [b](x) ∀x ∈ H, (24)

and if |N | is odd,

mcgapH [b](x) ≤ |N | chgapH [b](x) ∀x ∈ H.

Proof As in the proof of Theorem 8, we restrict attention to the casewhere|N | is even. First, forxi, xj ∈ [0, 1] observe

that

min{xi, xj} −max{xi + xj − 1, 0} = min{xi, xj}+min{1− xi − xj , 0}

= min{xi +min{1− xi − xj , 0}, xj +min{1− xi − xj , 0}

= min{xi, xj , 1− xi, 1− xj}.

Thus, using this in (14) we can writemcgapH [b](x) as

mcgapH [b](x) =
∑

{i,j}∈E

|aij |min{xi, xj , 1− xi, 1− xj}

= max
(x,z)∈Q

∑

{i,j}∈E

|aij |zij

whereQ = {x ∈ H, z ∈ R
|E| | zij + xi ≤ 1, zij + xj ≤ 1, zij ≤ xi, zij ≤ xj , ∀{i, j} ∈ E}. All the constraints ofQ

are of the formzij − xi ≤ 0 or zij + xi ≤ 1, and hence have the form of the constraint matrix of a2-SAT problem.

Thus, the results of [11] imply that all vertices ofQ are{0, 1/2, 1}-valued.

Now, we need to prove

min
x∈H

(
(|N | − 1) chgapH [b](x)−mcgapH [b](x)

)
≥ 0.

This minimization problem is equivalent to:

min
(x,z)∈Q

(

(|N | − 1) chgapH [b](x)−
∑

{i,j}∈E

|aij |zij

)

SincechgapH [b](x) is a concave function ofx, this is a concave minimization problem over the polyhedronQ, and

hence has an extreme point optimal solution. Thus, just as inthe proof of Theorem 8, it is sufficient to show that (24)

holds for{0, 1/2, 1}-valuedx.
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Thus, letx be any{0, 1/2, 1}-valued vector. Using (16) and (17) from Lemma 3 to bound bothvexH [b](x) and

cavH [b](x) yields

chgapH [b](x) = cavH [b](x)− vexH [b](x)

≥
1

4(|N | − 1)

( ∑

{i,j}∈γ(Tf )

|aij |+
∑

{i,j}∈γ(Tf )

|aij |
)

=
1

(|N | − 1)
mcgapH [g](x)

by Lemma 2, completing the proof. ⊓⊔

The bound in Theorem 9 is significantly weaker than Theorem 8 which provides a constant approximation guaran-

tee; in this case, the approximation factor isn. In §4 we present numerical examples that suggest this bound is not tight,

and we leave it as an open question whether there is a constantfactor approximation. The following example shows

that even for bipartite graphs, when the weights have mixed signs it is possible thatchgapH [b](x) < mcgapH [b](x),

which is in contrast to the case when the weights are all nonnegative.

Example 2Consider the bipartite graph withn = 4 nodes and edge setE = {(1, 3), (1, 4), (2, 3), (2, 4)} with

weightsa14 = −1 andaij = 1 otherwise, and consider the pointx = (1/2, 1/2, 1/2, 1/2). ThenmcgapH [b](x) =

(1/2)
∑

{i,j}∈E |aij | = 2. For cavH [b](x), the optimal value setsλ{1,3} = λ{2,4} = 1/2 and achieves value

(1/2)(a13 + a24) = 1 and for vexH [b](x) the optimal value setsλ{1,4} = λ{2,3} = 1/2 and achieves the value

(1/2)(a14 + a23) = 0. Thus,chgapH [b](x) = 1 < 2 = mcgapH [b](x). Note also thatmcuH [b](x) = 3/2 > 1 =

cavH [b](x), showing the necessity ofat > 0 in Theorem 4, even for the case of a bilinear function in whichG = (N,E)

is bipartite.

Theorem 8 provides a worst-case approximation guarantee for bilinear functions having nonnegative weights that

increases with the coloring number of the graph underlying abilinear function. Since graphs with small coloring

number tend to be less dense, this suggests that the McCormick relaxation gap will generally be closer to the convex

hull relaxation gap for sparser graphs. The next result provides further support for this intuition, regardless of the signs

of the edge weights. Given a graphG = (N,E) and weightsaij for {i, j} ∈ E, for anyE′ ⊆ E we denotebE′ as the

bilinear function using only the terms inE′:

bE′(x) =
∑

{i,j}∈E′

aijxixj .

Theorem 10 LetE′ ⊆ E. Then, for anyx ∈ H,

mcgapH [bE′ ](x)− chgapH [bE′ ](x) ≤ mcgapH [bE ](x)− chgapH [bE ](x).

Proof We prove the equivalent inequality:

mcgapH [bE ](x)−mcgapH [bE′ ](x) ≥ chgapH [bE ](x)− chgapH [bE′ ](x). (25)

We prove the result holds forE′ = E \ {k, l} where{k, l} is an arbitrary edge inE, which implies the result for any

E′ ⊆ E by induction.

First supposeakl > 0. Then,mcuH [bE ](x) − mcuH [bE′ ](x) = akl max{xk + xl − 1, 0} andmclH [bE ](x) −

mclH [bE′ ](x) = akl min{xk, xl}. Hence,mcgapH [bE ](x) − mcgapH [bE′ ](x) = akl
(
max{xk + xl − 1, 0} −

min{xk, xl}
)
. Similarly, if akl < 0, thenmcgapH [bE ](x) − mcgapH [bE′ ](x) = −akl

(
max{xk + xl − 1, 0} −
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min{xk, xl}
)
. Thus, for anyakl,

mcgapH [bE ](x)−mcgapH [bE′ ](x) = |akl| (max{xk + xl − 1, 0} −min{xk, xl}) . (26)

Now, suppose againakl > 0 and consider the linear program definingcavH [bE ](x):

cavH [bE ](x) = max
λ∈∆2n

∑

S∈S

a(γE(S))λS (27a)

s.t.
∑

S∈Si

λS = xi, i = 1, . . . , n (27b)

where we have made the dependence on the edge setE explicit: γE(S) = {{i, j} ∈ E | i ∈ S, j ∈ S}. Let λE be an

optimal solution to (27). Clearly,λE is also a feasible solution to the problem (27) whenE′ replacesE. Thus,

cavH [bE ](x)− cavH [bE′ ](x) ≤
∑

S∈S

a(γE(S))λES −
∑

S∈S

a(γE
′

(S)
)

λES

=
∑

S∈S:{k,l}∈γE(S)

λES

(

a(γE(S))− a(γE
′

(S))
)

=
∑

S∈Sk∩Sl

aklλ
E
S .

But, (27b) implies
∑

S∈Sk∩Sl
λES ≤ xk and

∑

S∈Sk∩Sl
λES ≤ xl and hence,

cavH [bE ](x)− cavH [bE′ ](x) ≤ akl min{xk, xl}. (28)

Now let λE be an optimal solution to the linear program definingvexH [bE ](x), which is (27) withmax replaced

by min. AsλE is also feasible to the LP definingvexH [bE′ ](x), we have, similar to the argument forcavH ,

vexH [bE ](x)− vexH [bE′ ](x) ≥
∑

S∈S

a(γE(S))λES −
∑

S∈S

a(γE
′

(S)
)

λES

=
∑

S∈Sk∩Sl

aklλ
E
S .

Next, (27b) implies

xk + xl =
∑

S∈Sk

λES +
∑

S∈Sl

λES =
∑

S∈Sk∪Sl

λES +
∑

S∈Sk∩Sl

λES ≤ 1 +
∑

S∈Sk∩Sl

λES .

Since alsoλES ≥ 0 this implies

vexH [bE ](x)− vexH [bE′ ](x) ≥
∑

S∈Sk∩Sl

aklλ
E
S ≥ akl max{xk + xl − 1, 0}.

Combining this with (28) implies

chgapH [bE ](x)− chgapH [bE′ ](x)

= cavH [bE ](x)− vexH [bE ](x)−
(

cavH [bE′ ](x)− vexH [bE′ ](x)
)

≤ akl (max{xk + xl − 1, 0}+min{xk, xl})

= mcgapH [bE ](x)−mcgapH [bE′ ](x).
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The argument forakl < 0 is similar, with the only difference being that the inequality
∑

S∈Sk∩Sl
λES ≤ min{xk, xl}

is needed to boundvexH [bE ](x)− vexH [bE′ ](x) and the inequality
∑

S∈Sk∩Sl
λES ≥ max{xk + xl − 1, 0} is needed

to boundcavH [bE ](x)− cavH [bE′ ](x).

⊓⊔

4 Numerical experiments

In this section we present some numerical examples that illustrate and complement the theory we presented in the

previous sections.

First we look at some experiments related to the approximation results for bilinear functions. We are interested

in understanding how tight our results are for both the positive coefficients case (Theorem 8) and the mixed-sign

coefficients case (Theorem 9). Also, inspired by Theorem 10,we are interested in the effect the graph density has on

the quality of the McCormick relaxation compared to the convex hull relaxation.

In our first experiment, we fixed the dimension atn = 7 and randomly generated 4000 graphs with varying

density. We consider two cases for the coefficients on the bilinear terms appearing in the corresponding bilinear func-

tion: (1) all coefficients are positive one, and (2) coefficients have mixed-sign, having ‘+1’ with probability3/4 and

‘-1’ with probability 1/4. For each random graph, we computed the maximum ratio between the McCormick re-

laxation gap and the convex hull relaxation gap of the corresponding bilinear function. Specifically, we calculated:

maxx∈H {mcgapH [b](x)/ chgapH [b](x)} . This maximum was found by calculatingmcgapH [b](x) andchgapH [b](x)

for all 37 {0, 1/2, 1}-valued points inH, where the linear programs (7) and (8) were used to calculatechgapH [b](x)

for each of these points.

Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio

χ avg max mode(%) avg max mode(%)
2 1.000 1.000 1.000(100) 1.111 2.000 1.000(88.7)
3 1.487 1.500 1.500(94.9) 1.706 2.250 1.500(41.5)
4 1.500 1.500 1.500(100) 1.902 2.500 2.000(63.0)
5 1.667 1.667 1.667(99.8) 2.051 2.600 2.000(41.4)
6 1.667 1.667 1.667(100) 2.205 3.000 2.500(54.1)
7 1.750 1.750 1.750(100) 2.294 3.000 2.500(61.4)

Table 1 Maximum gap ratio for random graphs of size 7, summarized by coloring number.

Table 1 displays the results summarized by coloring number.For each coloring number from two to seven, we

report the average, maximum, and mode of the maximum ratio taken over all graphs that had that coloring number. For

the mode, we also report the percentage of the graphs that achieved that quantity. These results show that the bound of

Theorem 8 is tight for coloring number up to seven. Also, the vast majority of the randomly generated graphs achieved

this worst-case bound. In contrast, when the coefficients have mixed-sign, the bound of Theorem 9 does not appear

tight. The maximum observed ratio was three, in contrast to the bound of|N | = 7 given by the theorem. In addition,

the bound in Theorem 9 does not depend on the coloring number,but these results show that the worst-case ratio does

tend increase with coloring number.

We also summarized our results by graph density in Table 2. The average, maximum, and mode of the worst-case

ratios is uniformly increasing as the graph density increases. These results reinforce the intuition provided by Theorem

10 that the McCormick relaxation becomes relatively worse compared to the convex hull relaxation for denser graphs.

We next consider multilinear functions having terms with more than two variables defined over[ℓ, u]. We con-

ducted some numerical experiments to see how the convex hullrelaxation compares to two weaker relaxations: (1)
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Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio

density avg max mode(%) avg max mode(%)
0.0–0.1 0.000 0.000 0.000(100) 0.000 0.000 0.000 (100)
0.1–0.2 1.000 1.000 1.000(100) 1.000 1.000 1.000 (100)
0.2–0.3 1.049 1.500 1.000(90.1) 1.090 2.000 1.000 (83.5)
0.3–0.4 1.365 1.500 1.500(67.6) 1.544 2.000 1.500 (55.3)
0.4–0.5 1.494 1.500 1.500(98.4) 1.758 2.250 2.000 (41.1)
0.5–0.6 1.499 1.667 1.500(99.5) 1.859 2.250 2.000 (57.5)
0.6–0.7 1.507 1.667 1.500(95.8) 1.918 2.500 2.000 (86.2)
0.7–0.8 1.542 1.667 1.500(74.9) 1.970 2.500 2.000 (63.1)
0.8–0.9 1.637 1.667 1.667(81.9) 2.032 3.000 2.000 (51.7)
0.9–1.0 1.717 1.750 1.750(60.1) 2.264 3.000 2.500 (57.5)

Table 2 Maximum gap ratio for random graphs of size 7, summarized by density.
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Fig. 2 Scatter plots comparing the term-by-term (left) and recursive McCormick (right) relaxation gaps to the convex hull relaxation gap for
the functionφ defined over[1, 2]5.

the recursive McCormickrelaxation, obtained by independently applying recursiveMcCormick to each of the terms,

and (2) theterm-by-termrelaxation, obtained by using the concave and convex envelopes of each of the terms. For

these computations, we again used the linear programs (7) and (8) to calculatechgapH [φ](x) for a given pointx. The

term-by-term relaxation was calculated by using the formulation of (7) and (8) for each product termindependently.

Corollary 5 states that ifℓ ≥ 0 and the coefficients on all terms are positive, the concave upper bounding function

given by the term-by-term relaxation is equal to the concaveenvelope. We are interested in seeing how the recursive

McCormick and term-by-term relaxations perform more generally. As an example, we consider the following function:

φ(x) = x1x2x3x4x5 + x1x2x3x4 + x1x3x4x5 + x2x3x5 + x1x3x5 + x4x5 + x1x2,

which has multiple terms of different sizes, all with positive coefficients. We compare the term-by-term relaxation and

recursive McCormick relaxations to the convex hull relaxation of the function over two different domains:[1, 2]5 and

[−1, 2]5. Figure 2, for the[1, 2]5 case, shows scatter plots comparing the term-by-term relaxation gap to the convex

hull relaxation gap (on the left) and the McCormick relaxation gap to the convex hull relaxation gap (on the right) for

5000 randomly generated points in[1, 2]5. Figure 3 shows the same plots for the domain[−1, 2]5. In both cases, the

term-by-term relaxation appears significantly better thanthe recursive McCormick relaxation, since in the latter case

the distribution of the points is shifted significantly awayfrom the ideal case of the line with slope one.

The most interesting of these plots is the term-by-term scatter plot for the case of domain[1, 2]5 in Figure 2.

Recall that whenℓ ≥ 0, Corollary 5 applies and hence we know the term-by-term upper relaxation yields the concave

envelope. However, we have no theory suggesting the overallgap should be close to the convex hull gap. Nevertheless,

the term-by-term scatter plot has the same form as the scatter plots in Figure 1 for the bilinear case, in fact with an

even tighter band, suggesting that such a result might hold.In contrast, as we would expect based on the examples in
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Fig. 3 Scatter plots comparing the term-by-term (left) and recursive McCormick (right) relaxation gaps to the convex hull relaxation gap for
the functionφ defined over[−1, 2]5.

Section 2.3, the results for the recursive McCormick relaxation do not suggest any such bound. Furthermore, in Figure

3 with domain[−1, 2]5, Theorem 5 does not apply, and thus it is not surprising that the term-by-term relaxation does

significantly worse than the convex hull.

To further explore the strength of the term-by-term relaxation whenℓ ≥ 0 and all coefficients are positive, we

generated 200 random multiterm multilinear functions of dimension 6, and estimated the maximum ratio of term-by-

term gap to convex hull gap for each of these. We estimated this ratio by calculating the ratio at 50000 random points

in the domain[0, 1]6 and taking the maximum of these. The largest estimate of the maximum ratio we found was about

1.21. This experiment, along with images like Figure 2, leads us to the following conjecture.

Conjecture 1For multilinear functions with positive coefficients defined over[ℓ, u] with ℓ ≥ 0, the ratio between the

term-by-term gap and the convex hull gap is uniformly bounded above by a constant.

5 Concluding remarks

We have studied the relationship between the convex hull relaxation of a multilinear function and the McCormick

relaxation, obtained by relaxing individual bilinear terms. For a single product term of possibly more than two variables,

we found a new condition when these relaxations are equivalent, but found that in general the McCormick relaxation

can be significantly larger than the convex hull relaxation.For bilinear functions, we demonstrated that the gap between

the upper and lower bounding functions from the McCormick relaxation is always within a constant factor of the gap

between the concave and convex envelopes. Moreover, the maximum relative difference decreases as the coloring

number of the associated graph decreases. These results, along with a result showing that the difference in these gaps is

always smaller for sparser graphs, suggest that the extra benefit from using a relaxation stronger than the McCormick

relaxation is likely to be most beneficial when the associated graph is dense.

This work leaves some additional theoretical and computational questions open. On the theoretical side, we be-

lieve that the approximation ratio we have provided for general bilinear functions (having both positive and negative

coefficients on the terms) is not as tight as possible. We havealso conjectured that using the convex hull of every

term in a multilinear function having positive coefficientson all terms will yield an approximation with a gap that is

within a constant factor of the gap between the concave and convex envelopes. This would be a generalization of our

result for bilinear functions. On the computational side, it would be interesting to build on the ideas of [2] and use

the insights gained from this paper to devise a relaxation approach for multilinear functions that yields some of the

potential improvement in relaxation quality that the convex hull formulation yields while keeping the relaxation size

manageable.
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