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Abstract

We describe a class of valid inequalities for the bounded, nonconvex
set described by all points within a (n + 1)-dimensional hypercube
whose (n + 1)-st coordinate is equal to the product of the first n
coordinates, for any n ≥ 2. This set can be defined as Mn = {x ∈
Rn+1 : xn+1 = x1x2 · · ·xn, li ≤ xi ≤ ui∀i = 1, 2 . . . , n + 1}, with
li and ui constants. Approximating the convex hull of Mn through
linear inequalities is essential to a class of exact solvers for nonconvex
optimization problems, namely those which use Linear Programming
relaxations to compute a lower bound on the problem. Together with
the well-known McCormick inequalities, these inequalities are valid for
the convex hull of M2. There are infinitely many such inequalities,
given that the convex hull of M2 is not, in general, a polyhedron. The
generalization to Mn for n > 2 is straightforward, and allows us to
define strengthened relaxations for these higher dimensional sets as
well.
Keywords: nonconvex optimization, multilinear functions, convex
hull.
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1. Multilinear sets

Consider the following nonconvex, bounded set

Mn = {x ∈ Rn+1 : xn+1 =
n
∏

i=1

xi, !i ≤ xi ≤ ui, i = 1, 2 . . . , n + 1},

where l and u are (n + 1)-vectors. We assume 0 < !i < ui for all i = 1, 2 . . . , n + 1.
The set Mn is nonconvex as the function ξn(x) =

∏n
i=1 xi is neither convex nor

concave – its epigraph epi(M) = {x ∈ Rn+1 : xn+1 ≥
∏n

i=1 xi, 0 < !i ≤ xi ≤ ui, i =
1, 2 . . . , n} and its hypograph hyp(M) = {x ∈ Rn+1 : xn+1 ≤

∏n
i=1 xi, 0 < !i ≤ xi ≤

ui, i = 1, 2 . . . , n} are nonconvex sets.
Assuming Mn is contained in the first orthant, trivial bounds for xn+1 are given

by
∏n

i=1 !i and
∏n

i=1 ui, respectively, and denoted by !̄n+1 and ūn+1. In general,
!̄n+1 ≤ !n+1 < un+1 ≤ ūn+1; in the remainder, we use the notation M!

n for the set
Mn where !n+1 = !̄n+1 and un+1 = ūn+1.

We are interested in developing a convex superset Cn of Mn defined by a system
of linear inequalities, therefore we seek a polyhedral set Cn ⊇ Mn. Our interest is
motivated by the nonconvex Optimization problem

P : min{cx : x ∈ X},
where X is, in general, a nonconvex set. In order to solve problems like P to opti-
mality, one needs to implicitly enumerate all local optima, for instance by branch-
and-bound algorithms. The bounding algorithms in such approaches often relies
on a linear relaxation of the nonconvex problem [3, 4], thus benefiting from tighter
linear relaxations.

2. Linear inequalities for n = 2

Here we develop convex inequalities for the set M2 = {(x1, x2, x3) ∈ [l, u] : x3 =
x1x2}. Although this is the simplest case, many considerations generalize easily to
the case when n > 2.

2.1. Unbounded x3

The following linear relaxation of M!
2 was introduced by McCormick [2] and shown

to be its convex hull by Al-Khayyal and Falk [1]:

x3 ≥ !2x1 + !1x2 − !1!2
x3 ≥ u2x1 + u1x2 − u1u2

x3 ≤ !2x1 + u1x2 − !1u2

x3 ≤ u2x1 + !1x2 − u1!2,

and is depicted in Figure 1a for convenience. The shaded tetrahedron is the (poly-
hedral) convex hull, while M!

2 is shown in colors.

2.2. Nontrivial lower and upper bound for x3

We consider first a finite lower bound, !3 > !̄3 = !1!2. The darker area in Figure
1b shows the projection of M2 onto (x1, x2), that is, the set P2 = {(x1, x2) ∈ R2 :
!i ≤ xi ≤ ui, i = 1, 2, x1x2 ≥ !3}. It is safe to assume here that !3 ≤ !1u2 and
!3 ≤ u1!2, as otherwise a valid lower bound for x1 (resp. x2) would be !3/u2 > !1
(resp !3/u1 > !2), or equivalently, the upper left (resp. the lower right) corner of the
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Figure 1

bounding box in Figure 1b would be cut out by the convex set x1x2 ≥ !3. Similarly
we assume that u3 ≥ !1u2 and u3 ≥ u1!2.

Projecting M2 onto (x1, x2) gives a convex set P2. Consider a point x! on the
curve x1x2 = !3 with !1 ≤ x!

1 ≤ u1 and !2 ≤ x!
2 = !3/x!

1 ≤ u2. The tangent to the
curve x1x2 = !3 at x! gives a linear inequality a1(x1 − x!

1) + a2(x2 − x!
2) ≥ 0, that

is valid for P2. The coefficients a1 and a2 are given by the gradient of the function
ξ2(x) = x1x2 at x!, i.e., a1 = ∂π

∂x1
|x! = x!

2 and a2 = ∂π
∂x2

|x! = x!
1. The lighter area

within the bounding box above the tangent line is the set of points satisfying the
above linear constraint, which we rewrite here:

(3.1) x!
2(x1 − x!

1) + x!
1(x2 − x!

2) ≥ 0.

As this inequality is valid within P2 and is independent from x3, it is also valid
for M2. We can lift it as follows: the inequality

(3.2) x!
2(x1 − x!

1) + x!
1(x2 − x!

2) + a(x3 − !3) ≥ 0

is clearly valid for x3 = !3. For it to be valid for M2,

g(a3) = min{x!
2(x1 − x!

1) + x!
1(x2 − x!

2) + a(x3 − !3) : (x1, x2, x3) ∈M2} ≥ 0

must hold. It is easy to show that g(a3) = 0 if a ≥ 0 (a global optimum is given by
(x!

1, x
!
2)), hence a < 0 in all lifted inequalities (3.2).

We next show how to calculate a. First we will show how to get this coefficient
and then we will prove that the inequalities we get are not dominated by any other
valid inequality. To find the coefficient a in the inequality (3.2), intuitively we know
that the plane

(3.3) x!
2(x1 − x!

1) + x!
1(x2 − x!

2) + a(x3 − !3) = 0

should touch the curve x1x2 = u3 at exactly one point and first we want to find this
point. Let’s call this point (x̄1, x̄2). If for a moment we disregard the bounds on x1

and x2, the fact that the plane (3.3) touches the curve (x̄1, x̄2) at exactly one point
means that the plane would be tangent to the curve x1x2 = u3 at that point. This
means that the gradient of the curve at (x̄1, x̄2) is parallel to the projection of the
normal to the plane onto the (x1, x2) space. The gradient of the curve x1x2 = u3 at
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(x̄1, x̄2) is (x̄2, x̄1) and the projection of the normal to the plane onto the (x1, x2)
space is (x!

2, x
!
1). As a result we will have:

(3.4) ∃α ∈ R : x̄2 = αx!
2, x̄1 = αx!

1.

But we know that x̄1x̄2 = u3, so we will have x̄1x̄2 = u3 = α2x!
1x

!
2 = α2"3, and as

a result

(3.5) α =

√

u3

"3
.

On the other hand we know that (x̄1, x̄2) is on the plane (3.3), which implies

x!
2(x̄1 − x!

1) + x!
1(x̄2 − x!

2) + a(u3 − "3) = 0,

As a result,

(3.6) x!
2(αx!

1 − x!
1) + x!

1(αx!
2 − x!

2) + a(u3 − "3) = 0.

By (3.5) and (3.6), the value for a is
2(1−

q

u3
!3

)"3

u3−"3
.

Notice that the value of a does not depend on the value of x!
1 and x!

2 and is
less than zero. Intuitively this value for a will give a tight valid inequality for M2

if "1 ≤ x̄1 ≤ u1 and "2 ≤ x̄2 ≤ u2 (the proof will come later). But if (x̄1, x̄2) is not
in the domain of (x1, x2) we need to find a point on the curve x1x2 = u3 at which
the plane (3.3) touches the curve. Intuitively this point would be one of the end
points of the curve x1x2 = u3; "1 ≤ x1 ≤ u1, "2 ≤ x2 ≤ u2. In fact that point will
be the one which is closer to (x̄1, x̄2).

Again consider the curve x1x2 = u3. On this curve we know that:

x1 ≥
u3

u2
= l̄1; x2 ≥

u3

u1
= l̄2; x1 ≤

u3

"2
= ū1; x2 ≤

u3

"1
= ū2.

Then the real bounds over x1 and x2 on the curve x1x2 = u3 would be "!1 ≤ x1 ≤ u!
1,

"!1 = max (l̄1, "1), and u!
1 = min (ū1, u1); "!2 ≤ x2 ≤ u!

2, "
!
2 = max (l̄2, "2), and

u!
2 = min (ū2, u2). However, based on the assumptions on the upper bound of x3

(see Section 2.2)

(3.7) "!1 =
u3

u2
; u!

1 = u1; "!2 =
u3

u1
; u!

2 = u2.

As a result, the end points of the curve x1x2 = u3 in M2 are (u3

u2
, u2) and (u1,

u3

u1
).

It’s easy to see that if αx!
1 ≥ u1 and αx!

2 ≤ u3

u1
, the the right end point would be

(u1,
u3

u1
), and if αx1 ≤ u3

u2
and αx2 ≥ u2, the right end point would be (u3

u2
, u2). So

if αx!
1 ≥ u1 and αx!

2 ≤ u3

u1
and u1

α ≤ x!
1 ≤ "3

"2
, the plane (3.3) would touch the curve

x1x2 = u3 at (u1,
u3

u1
) and therefore we will have:

(3.8) x!
2(u1 − x!

1) + x!
1(

u3

u1
− x!

2) + a(u3 − "3) = 0,

and as a result

(3.9) a =
x!

2(u1 − x!
1) + x!

1(
u3

u1
− x!

2)

"3 − u3
.

On the other hand, if αx1 ≤ u3

u1
and αx2 ≥ u2 and "1 ≤ x1 ≤ u3

αu2
, the plane (3.3)

would touch the curve x1x2 = u3 at (u3

u2
, u2) and we will have:

(3.10) x!
2(

u3

u2
− x!

1) + x!
1(u2 − x!

2) + a(u3 − "3) = 0,
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hence,

(3.11) a =
x!

2(
u3

u2
− x!

1) + x!
1(u2 − x!

2)

!3 − u3
.
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Figure 2

Now we need to deal with two other cases; #3
#2
≤ x!

1 ≤ u1, x!
2 = !2 and x!

1 = !1,
#3
#1
≤ x!

2 ≤ u2. First consider the case which #3
#2
≤ x!

1 ≤ u1, x!
2 = !2. Intuitively we

can see that the plane which goes through the points ( #3
#2

, !2, !3), (u1, !2, u1!2), and
(u1,

u3

u1
, u3) gives an inequality which is valid for M2 and is not dominated by any

other inequality. Similarly for the second case in which x!
1 = !1,

#3
#1
≤ x!

2 ≤ u2, the

plane which goes through the points (!1,
#3
#1

, !3), (!1, u2, !1u2), and (u3

u2
, u2, u3) gives

an inequality which is valid for M2 and is not dominated by any other inequality.
In summary, as can be seen in Figure 2, if u3

αu2
< x!

1 < u1

α and u3

αu1
< x!

2 <
u2

α , then the point (x̄1, x̄2) (the point at which the plane (3.3) touches the curve
x1x2 = u3) will have u3

u2
< x̄1 < u1 and u3

u1
< x̄2 < u2. Otherwise, (x̄1, x̄2) happens

at either (u3

u2
, u2) or (u1,

u3

u1
).
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