
Randomized Rounding: A Primal Heuristic for
General Mixed Integer Programming Problems

Mahdi Namazifar?, Robin Lougee-Heimer ??, Andrew Miller ? ? ?, and John
Forrest †

August 2009

Abstract. We propose an algorithm for generating feasible solutions
to general mixed-integer programming problems. Computational results
demonstrating the effectiveness of the heuristic are given. The source
code is available as a heuristic in the COIN-OR Branch Cut Solver at
www.coin-or.org

Key words: Randomized rounding, primal heuristics, mixed integer
program, random walk.

1 Introduction

General mixed-integer progamming problems are an important class of optimiza-
tion problems due to their wide-spread application. Business applications that
can be successfully modeled as general mixed-integer programs include manufac-
turing production planning, capacity planning problems in telecommunications,
(more), and portfolio optimization. As each generation of optimization tools is
deployed, its success is met with an ever increasing demand to solve larger and
more complex problems. Due to the softness of constraints and quality issues
with input data, it is often not necessary (or even desireable) to solve problems
to optimality. A good feasible solution found quickly can be useful as a final
answer. Moreover, if an optimital solution is desired, a good initial feasible so-
lution can provide a bound that can be used to fathom nodes in a search tree.
For these reasons, among others, many researchers have focused their attention
on heuristics to construct feasible solutions quickly. In this paper we propose
a new algorithm for finding primal feasible solutions to the following general
mixed-integer programming problem.

? Corresponding Author. Department of Industrial and Systems Engineering, Univer-
sity of Wisconsin-Madison. Email: namazifar@wisc.edu

?? Business Analystics and Mathematical Sciences, I BM T. J. Watson Research Center.
Email: robinlh@us.ibm.com

? ? ? Institut de Mathematiquest de Bordeaux, Unversite Bordeaux. Email:
Andrew.Miller@math.u-bordeaux1.fr

† Business Analystics and Mathematical Sciences, IBM T. J. Watson Research Center.
Email: jjforre@us.ibm.com



2 Namazifar, Lougee-Heimer, Miller, and Forrest

Others

(MIP ) : max{cx+ hy : Ax+Gy ≤ b, x ∈ Zn
+, y ∈ R

p
+} (1)

The set S = {x ∈ Zn
+, y ∈ R

p
+, Ax + Gy ≤ b} is the feasible region. A point

(x, y) ∈ S is a feasible solution. The set S̄ = {x ∈ Rn
+, y ∈ R

p
+, Ax+Gy ≤ b} is

the continuous relaxation of S, and the linear programming (LP) relaxation of
MIP is

(LPR) : max{cx+ hy : Ax+Gy ≤ b, x ∈ Rn
+, y ∈ R

p
+} (2)

1.1 Primal heuristics

Heuristics can be constructive or improvement. An improvement heuristic takes
a(n integer) feasible point as an input and seeks to improve it. A constructive
heuristic produces a(n integer) feasible from scratch. Our focus is on constructive
hueristics.

Examples of constructive primal heuristics:

– Rounding. Solve LPR. Let (x̄, ȳ) be the optimal solution to LPR. For every
i such that x̄i ∈ Z, fix xi based on a rounding of x̄i. Solve the reduced MIP .
Rounding is one of the most basic heuristic operations. Rounding heuris-
tics are widely employed for specialized problems, for example the simple
greedy heuristic for the knapsack problem (ref. Nemhauser and Wolsey, pg
440) Rounding is also used successfully to construct valid inequalities to
strengthen the linear programming formulationsChvatal-Gomory cuts (ref.
Nemhauser and Wolsey).

– Diving.

– LP-and-Fix. Solve LPR. Let (x̄, ȳ) be the optimal solution to LPR. For ev-
ery i such that x̄i ∈ Z, fix xi = x̄i. Solve the reduced MIP

– Relax-and-Fix

– Feasibility Pump [14]. Given a point (x̄, ȳ) ∈ S̄, round x̄ to obtain a new
point, (ẋ, ȳ). Repeat the following steps: (i) Find the closest point in S̄ to
(ẋ, ȳ), say x̃, ỹ. (ii) Round x̃. (Note: there was the original FP by Bertacco
et al (2007) and the objective FP by Achterberg and Berthold (2007) both
availalble on NEOS.).

– Analytic Center Feasibility Method [10]. The ACFM has three phases:

1. The weighted analytic center is found and a search for feasible soultions
is conducted.
• Use Newton’s method to find the analytical center.
• Find the extreme points that max and min the LP relaxation



Randomized Rounding 3

• On the line segment from the analytic center to the min-extreme
point (and likewise on the line from the analytic center to the max-
extreme point): (i) take a step, (ii) round all the integer componets,
(iii) fix the integer variables to their rounded values, (iv) solve the re-
sulting lp. If the reduced problem is feasible, then its optimal solution
is feasible to the original problem. Note: Bounds can be tightened
and the algorithm re-run to find better feasible solututions.

2. If (1) does not produce s feasible integer solution, a second phase is
started where the weights of the violated constraints are changed to to
shift the analytic center (hopefully into the localization set).

3. If neither (1) or (2) produces an feasibe integer solution, a minimum
distance problem is solved

Examples of improvement primal heuristics include Relaxation Induced Neigh-
borhood Search (RINS) [3], Local Branching [4] and Solution Crossing [15].

1.2 The structure of the paper

The paper is organized as follows. random walk in a convex body, description
our our randomized rounding heuristic, computational results, and summary.

2 Random Walk in a Convex Body

Randomly sampling from a convex body is a well-studied problem which has
many different applications. Generally the goal is to obtain a random walk
which gets close to its stationary distribution in a polynomial number of steps.
Typically, uniformity of the distribution or other nice property is desired. One
application using random walks is the problem of computing the volume of an n-
dimensional convex body. In [12], similiar to a Monte Carlo Method, the solution
approach is to find random points inside the convex body which are uniformly
distributed. Another application such random sampling is finding the permanent
of a matrix with non-negative elements. In [13], the solution approach taken is
to sample from a combinatorial structure. The combinatorial structure used is
not convex, but the concept employed is closley-related to that of sampling from
a convex body. Portfoilo management is another application where researchers
have applied techniques using random walk in a convex body [11]. Recently,
Bertsimas and Vempala [2] proposed an algorithm for solving convex programs
using random walks.

In the literature, many papers concerning random walk in a convex body
assume the convex body is given by an oracle. In the context of mixed-integer
(linear) programming, the feasible region of the linear programming relaxation
is the convex body. The oracle in this conext is completely specificed by S̄.

We briefly describe the most frequently used random walk algorithms.



4 Namazifar, Lougee-Heimer, Miller, and Forrest

2.1 Review of existing algorithms for random walk in a convex
body

Ball-Steps- In this method, we choose a step size and a random initial point
inside the convex body. At each iteration, a vector from the unit ball of the
dimension of the convex body is selected and we move from the current point
towards the randomly selected vector by the step size. The membership of the
resulting point to the convex body is checked by calling the oracle. If this point
is in the convex body, it becomes the current point and we iterate. Otherwise, we
pick another random vector from the unit ball and follow the above procedure.

As you can see, in this method at each iteration the oracle is called once.
Suppose that we want to generate random points in the polyhedron of a mixed-
integer program. We would need to have a matrix-vector multiplication to show
that a point is inside the polyhedron. This means that to generate each ran-
dom point we would need O(n2) operations. This fact makes it computationally
expensive to use the Ball-Steps method to generate random points inside the
polyhedron of a mixed integer program.

Hit and Run- In this method, we pick a random initial point inside the convex
body. At each iteration we pick a random vector from the unit ball and from the
current point we go towards the direction of this vector and its negative until we
hit the boundary of the convex body. Because of convexity properties, we have
a line segment inside the convex body. We randomly select a point on this line
segment, which becomes the starting random point in the next iteration of the
algorithm.

If we are dealing with a polyhedron which is defined by half-space (the case
in mixed-integer linear programm) to find the points where the line from the
current point towards the vector intersects with boundary of the convex body,
we need to a matrix-vector multiplication at each iteration (that means O(n2)
operations for each random point) which is computationally expensive.

Walking on a truncated grid - In this method we define a grid which is suffi-
ciently fine and an initial random point. At each iteration from the current point
one goes one unit of the grid towards one of the possible directions (two times
the dimension of the convex body different directions) and makes sure that by
moving towards that direction, the point stays in the convex body.

The methods described above are known to have polynomial convergence
to the stationary distribution. For the purpose of this paper, we do not need
uniformity of the generated points. Instead, we seek a way to find random points
inside the convex body very quickly. To accomplish this purpose, we present a
method of generating random points inside a polytope with known extreme
points, and later on we will discuss why we are interested in finding random
points inside such a polytope.



Randomized Rounding 5

2.2 Our random walk algorithm

For a purpose that will be clear shortly, suppose that all we know from convex
polytope is its extreme points. Based on Minkowski’s theorem, we know that
the extreme points of a polytope are sufficient to describe that polytope. We
generate random points inside this polytope by the following algorithm.

1: Construct an initial point in the interior of the polytope. One generation
method to construct the initial point is to take a random convex combination
of the extreme points. Let this point be the current point.

2: while (Number of points is less than desired) do
3: Randomly select a extreme point.
4: On the line connecting the current point and the randomly selected

extreme point, randomly pick a point and take it as the current point.
5: end while

This algorithm is computationally efficient. Each iteration only requires a
vector summation and a constant-vector multiplication which means O(n) oper-
ation per random poin. Using this algorithm, we can generate numerous random
points inside the polytope very quickly.

3 Randomized Rounding

In this section we explain how our proposed heuristic, Ranomized Rounding,
works. From a high level prespective, Randomized Rounding first tries to find
some of the extreme points of the feasible region of the problem. Then it tries
to find random points in the interior of the polytope for which we have all
the extreme points (the points we found in the first step). By rounding these
random points to the nearest norm-1 integer point we hope to find integer feasible
solutions for the problem. In the remaining of this section we explain how we do
the above mentioned in more details.

As we described earlier, we need to find some of the extreme points of the
feasible region of the problem. To do so we can use the primal simplex method
by which at each iteration we get to a new extreme point (if it is not a degenerate
pivot). So we keep the solution of each iteration of the primal simplex method.
For the starter we solve the LP relaxation of the problem by primal simplex
and we get a set of extreme points of the feasible region. But we still need a lot
more extreme point which are some what diverse in the sense that they give us a
rather uniform sample of the set of all the extreme points of the feasible region.
By this we mean that we want a set of extreme points which are from all over
the feasible region. To get such a set of extreme points, we build some random
vectors which are generated by randomly tilting the constraints of the problem.
Then we replace the objective function of the problem with these random vectors
and we set the sense of objective based on the sense of the constraint we tilted
(maximization for less than or equality constraints, minimization for greater
than or equality constraints, and one of the two for equality constraints). Then
we start to solve this new problem (which basically has just a different objective



6 Namazifar, Lougee-Heimer, Miller, and Forrest

function compared to the original LP relaxation) using primal simplex again, and
at each iteration we keep the solution. We do this until we reach the maximum
number of extreme points parameter or until we have no more constraints to
tilt.

An important implementation point raises here; we need to pick the con-
straints in a random order. The reason for this is usually in the MIP models,
consecutive constraints are pretty similar or related to each other. This fact
causes the consecutive LP problems to have the same (or very close) optimal
solutions, and hence if we start solving each new LP using the previous LP’s
optimal basis we won’t have many different extreme points at each LP solve. On
the other hand, if we shuffle the constraints this problem goes away.

One other important implementation issue is how to randomly tilt a hyper-
plane defining a constraint. In Randomized Rounding for a given constraint we
look at the coefficients of the hyperplane defining it. If the coefficient is 0 we
randomly make it 0.1 or −0.1. If the coefficient is not 0 randomly we multiply it
by either 1.1 or 0.9. This gives us a tilted hyperplane which can be used to set up
a new objective funtion. The reason why we tilt the constraints in the first place
is first of all we try to make the LP problems to have a single optimal solution;
and second of all we want to avoid the case in which one point is optimal to a
buch of LP problems which makes the process of getting the extreme points to
visit the same point over and over again.

At this point we have a set of extreme points of the feasible region of the LP
relaxation of the MIP problem. The first thing we do next is check the feasiblity
of these points to the MIP. If any of these points ends up being feasible, we check
if it’s better than the best solution we have found yet, and if so we update the
best feasible solution.

After this we start generating random points inside the convex hull of these
extreme points using the method which was described in the previous section.
After generating each random point we round it to the norm-1 nearest integer
point and check its feasibility. If it’s not feasible we generate the next random
point and so on. If it’s feasible we check whether it’s better than the best feasible
solution found yet and if so, we update the best feasible solution. We generate
random points until the number of generated random points exceeds a parameter.

One other important technical point is when we are solving one of the linear
programs generated by tilting one of the constraints, the primal simplex dos not
have to go all the way to find the optimal solution. For some problems it takes
too many iterations for primal simplex to solve the linear programs. For such
cases we can abort the primal simplex algorithm after a number of iterations
and start working on the next linear program. This will help the heuristic to
find more diverse extreme points which are found using a more diverse set of
objective functions.

The high-level outline of our Randomized Rounding heuristic is as follows.

S ← 0

– Construct a subset of extreme points of S̄



Randomized Rounding 7

• Select a row of the constraint matrix

• Create an objective function based on the row

• Invoke the primal simplex method to solve the LP relaxation of the
orginal problem with the new objective. Abort the LP solve after a cer-
tain number of primal simplex iterations.

• At each iteration of the LP solve, store the extreme point found.

• Do this until the desired number of extreme points have been found or
until every row has been used.

– Construct random points inside the convex hull of the set of extreme points
we have found.

• Initialize the point to be a random convex combination of the set of ex-
treme points.

• Repeat the following until the desired number of random points is reached.

• (i) Choose a random extreme point from the set of extreme points

• (ii) Set the new point to be a random point on the line segment connect-
ing the current point and the random extreme point.

• (iii) Round each random points to the closest norm-1 integer points

• (iv) Evaluate the original objective function at the rounded point. If it
is attractive, check evaluate the points feasibility. (This eliminates the
unnecessary computation expense of evaluting feasibilty for points that
are unnattractive.)

• (v) Checking the feasibility of these integer points

• Do this until the desired number of random points is reached.



8 Namazifar, Lougee-Heimer, Miller, and Forrest

Fig. 1: The feasible re-
gion of the problem.
Both variables are inte-
ger.

Fig. 2: Generate a ran-
dom objective function
by tilting one of the con-
straints

Fig. 3: Solve the LP us-
ing primal simplex. We
don’t necessarily have to
solve to optimality.

Fig. 4: Generate an-
other random objective
function and repeat the
process untill you have
enough points.



Randomized Rounding 9

Fig. 5: Take the polytope
defined by the extreme
points you have found.

Fig. 6: Using the method
presented, find random
points inside the poly-
tope.

Fig. 7: Round the ran-
dom points you have
found to the closest inte-
ger feasible point.

As one might predict, this heuristic might not work well in the cases where
the problem is far from full dimensional. In such problems when we round the
randomly generated points with a very high chance the rounded points fall out
of the feasible region of the problem and hence become infeasible. In fact for
problems that are not close to full dimensionality it is very unlikely to find an
integer feasible solution using this technique.

The main reason of losing dimensionality for linear programs is having equal-
ity constraints in the formulation of the problem, and also havin inequality con-
straints that are always satisfied at equality. This could give us a touchstone to
check if Randomized Rounding is suited for a specific problem. In other words,
by looking at the number of equality constraints plus the number of equlity
constraints that are always satisfied at equality, and compairing it with the to-
tal number of variables we can have an idea of whether Randomized Rounding
would be successful on the problem or not. As we will see in computational re-



10 Namazifar, Lougee-Heimer, Miller, and Forrest

sults section for close to full dimensional problems this heuristic can performs
well and find good feasible solutions fast.

It is trivial to find the number of equlity constraints. On the other hand,
finding the number of inequality constraints that are always satisfied at equality
is a bit tricky. Consider one inequality costraint (<=) and suppose that we want
to determine whether it is always satisfied at equality. To do so, we can form
a linear program which is the same as our original problem except it has a
slack variable for the constraint of our discussion and its objective function is to
maximize this slack variable. If the optimal value to this linear program is zero,
we can conclude that this inequality is always satisfied at equality. By doing this
for all the inequality constraints one by one, we can find out how many of the
inequality constraints are always satisfied at equality.

In the method mentioned above we might end up solving many linear pro-
grams to figure out how many inequality constraints are satisfied at equality. In
[5] it is shown that by just solving one linear program one can find this num-
ber. To do so, consider the original linear program and add a slack variable for
each inequality constraint and impose that these slack variables must be smaller
than one. Also change the objective function to maximize the sum of the slack
variables. Finally to ensure that any of the slack variables that can be nonzero
can reach their upper bound of 1 we add another variable which is multiplied to
the right hand side of the inequality constraints. Here is the formulation of this
auxilary linear program:

(AuxilaryLP ) max
∑
δi

s.t. Ax+ Iδ ≤ bλ
λ ≥ 1
0 ≤ δi ≤ 1,

considering that the original problem is the following:

(OriginalLP ) max cTx
s.t. Ax ≤ b.

3.1 Modified Randomized Rounding

As we noted earlier, Randomized Rounding works for the problems which are
close to full dimensionality. In the rest of this section we present a modification
of Randomized Rounding which is able to find feasible solutions for problems
which are not close to full dimensionality. This modified heuristic is very similar
to the original Randomized Rounding. The main difference is that in Randomized
Rounding, after rounding the randomly generated points we check their feasi-
bility. In the modified version of the heuristic, after rounding each randomly
generated point we form a linear program. This linear program is in fact the LP
relaxation of the original problem with the integer variables fixed to the values
they take at the rounded point. In another word, for each rounded point we try



Randomized Rounding 11

to find a point in the feasible region of the LP relaxation problem with the prop-
erty that its integer dimensions take the same value as the integer dimensions
of the rounded point.

Therfore, In this modified heuristic for each rounded point we solve a linear
program. If the linear program is infeasible we can conclude that there is no
integer feasible solution to the problem with the integer variables taking the
same values as the rounded point. On the other hand, if the linear program is
feasible, solving the LP gives us the feasible point with the same integer values
as the rounded point which takes the best objective value. It is clear that by
doing this, we are more likely to find feasible points, due to a more systematic
approach towards finding integer feasible solutions based on randomly generated
points inside the feasible region of the LP relaxation of the problem.

The drawback of this heuristic is we need to solve many linear programs. In
this regard, on the other hand, we need to remember that most of these linear
program solves are technically just checking the feasiblity of the program; whcih
perhaps is computationally not as expensive as solving the LP relaxation of the
problem. But still we are solving (checking feasibility of) such linear programs
for each random point that we generate. Therefore, cosidering the number of the
random points we generate, we might end up expending so much computation
on solvin these linear programs. This fact suggests that if the LP relaxation of
the problem is large, using this heuristic might not be computationally efficient.
We discuss this in more details in the next section.

4 Computational Results

4.1 Implementation and Test Beds

Randomized Rounding and its modified version are implemented in COIN-Cbc
[8]. There are a few implementation issues that we will discuss here. First of
all, a valid question could be at most how many extreme points should we find
before starting to find randomly generated points. The fact is we don’t want to
end up spending too much time finding the extreme points. On the other hand,
we would need a diverse and big enough set of extreme points. This maximum
number of extreme points we need to find of course depends on the size of the
problem and many more parameters. In our experiments we didn’t explore for
such relations. Instead we just used 10000 as the maximum number of extreme
points we find before we go to the next step.

As was mentioned in the previous section, Randomized Rounding does not
perform well on problems that are not close to full dimensionality. A family of
such problems is mixed integer knapsack problems. These problems only have
inequality constraints and more details about them can be found in [1]. In [9]
many instances of this kind are presented which are of different sizes. From each
size there are 5 instances among which we picked one and tried to find integer
feasible solutions for them using Randomized Rounding. Moreover we look at
the MIPLIB2003 library [7] too, and we try to find instances with the property



12 Namazifar, Lougee-Heimer, Miller, and Forrest

that the number of equality constraints plus the inequality constraints that are
always satisfied at equality is less than 5 percent of the dimension of the problem.

Moreover, like any other primal heuristic algorithm there could be many
different critera for finishing the Randomized Rounding algorithm. In these ex-
periments we terminate after finding 100000 randomly generated points.

For modified Randomized Rounding we find at most 1000 extreme points
and we generate 1000 random points. The main reason we find much less ran-
dom points in modified Randomized Rounding is the fact that the amount of
computation that is done for each point is a lot higher compared to Randomized
Rounding. In modified Randomized Rounding we solve a linear program for each
randomly generated point whereas in Randomized Rounding we just try to see
whether the point satisfies the constraints of the problem or not.

On the other hand we also did some computations on the modified version
of Randomized Rounding. As was mentioned in the previous section, since mod-
ified Randomized Rounding needs to solve many linear programs, it would be
beneficial to use it just for problems for which the linear programs that we solve
are not computationally expensive. One aspect of linear programs that usually
correlated to the computational cost of linear program is its number of non-zero
elements in its matrix of constraints. Moreover, since in the linear programs we
solve at each randomly generated point the integer variables are fixed, the num-
ber of continuous variables in the problem is also important in estimating the
computational cost of the linear programs we solve. All in all, modified Random-
ized rounding seems to perform well for problems with not too many non-zero
elements in the matrix of constraints and also not too many continuous vari-
ables. It appears that for problems with less than 20000 non-zero elements and
less than 200 continuous variables modified randomized rounding is able to find
good feasible solutions fast.

To test modified Randomized Rounding we picked the problems in MI-
PLIB2003 which meet these criteria. There are 17 problems with such speci-
fications which we will use for our experiments.

4.2 Runs and Comparisons

All the test are run on a 64bit machine with a 3.16 GHz Intel Xeon CPU and 8
GB of RAM. Also, Cbc 2.3 is the version we use in these computations.

We tested Randomized Rounding and its modified version on the problems
mentioned earlier and here we presen the results. First we look at the perfor-
mance of Randomized Rounding. Here we compare the stand-alone Randomized
Rounding code which is independent from Cbc against Cbc with the default set-
tings. In the default settings the following heuristics are on: Feasibility Pump,
RINS, Diving, Combine, Rounding, and Greedy. Table 1 shows the results.



Randomized Rounding 13

Table 1: Comparing Randomized Rounding against default Cbc for mixed integer knap-
sack problems

Problems Optimal Solution Found by RR Time Cbc with cutoff Cbc without cutoff

mik.250-1-50.1 -33641 -24395.31 1.17 0.04 2.66
mik.250-1-75.2 -49087 -10621.88 1.19 0.91 110.21
mik.250-1-100.3 -69517 -43467.11 1.12 102.14 238.32
mik.250-5-50.4 -33732 -12497.22 1.28 0.46 3.69
mik.250-5-75.5 -50490 -47765.48 1.36 7.95 25.47
mik.250-5-100.1 -67718 -63525.81 1.24 15.71 2188.12
mik.250-10-50.2 -33120 -30216.71 1.28 0.71 10.82
mik.250-10-75.3 -51762 -39628.06 1.41 3.92 14.3
mik.250-10-100.4 -71731 -63303.10 1.23 2.94 7.82
mik.250-20-50.5 -33688 -24528.05 1.29 0.59 2.12
mik.250-20-75.1 -49716 -12933.08 1.39 4.49 30.23
mik.250-20-100.2 -69114 -25131.01 1.06 14.48 50.41
mik.500-1-50.3 -31952 158.76 2.26 6.66 6.76
mik.500-1-75.4 -51761 -32239.87 2.54 22.97 >1800
mik.500-1-100.5 -65587 -8725.78 2.71 670.56 >1800
mik.500-5-50.1 -33738 -29605.40 2.27 0.54 3.23
mik.500-5-75.2 -49391 -46053.99 2.86 3.73 115.5
mik.500-5-100.3 -70724 -67546.09 2.9 3.8 23.65
mik.500-10-50.4 -34046 -12212.97 2.43 1.76 17.14
mik.500-10-75.5 -50547 -39812.07 3 40.89 533.76
mik.500-10-100.1 -69264 -56690.71 3.13 39.65 835.7
mik.500-20-50.2 -33135 -8897.45 2.5 3.02 15.42
mik.500-20-75.3 -51158 -9277.05 2.83 131.6 926.71
mik.500-20-100.4 -72407 -29275.05 3.16 37.01 804.07

The first column of the table is the name of the problems. The second column,
”Optimal Solution”, is the optimal solution of the problem. The third column,
”Found by RR”, is the objective value of the feasible solution found by Random-
ized Rounding. The fourth column, ”Time”, is the time it took for Randomized
Rounding to find the feasible solution. The fifthe column, ”Cbc with cutoff”, is
the time it takes for Cbc to solve the problem having the objective value of the
feasible solution found by Randomized Rounding as a cutoff value. And, finally,
the last column , ”Cbc without cutoff”, is the time it takes for Cbc itself with
the default settings to solve the problem.

As one can see, in almost all of the instances (except for mik.500-1-50.3)
Randomized Rounding is able to find a good feasible solution and adding the
objective value of this feasible solution to Cbc as a cutoff value improves the
performance of Cbc significantly. Another important fact that we can observe
from the table is that Randomized Rounding finds is very fast and it is all due
to the fact that Randomized Rounding is a very simple heuristic and there is
not any complicated computations involved in it.



14 Namazifar, Lougee-Heimer, Miller, and Forrest

Also we tried Randomized Rounding on the MIPLIB2003 instances that are
close to full dimensionality and are. Table 2 shows the results of these runs. As
one can see Randomized Rounding can not find a feasible solution for a few of
these problems. But for the others it finds a good solution fast. For some of these
problems Randomized Rounding finds a reasonably close to optimal solution in
a fraction of a second.

Table 2: Result of running Randomized Rounding for MIPLIP2003 instances which are
close to full dimensionality

Problems NumCol NumRow NumEq NumSatEq Opt Found by RR Time

aflow40b 2728 1442 78 0 1168 none -
arki001 1388 1048 20 25 7.58081e+06 none -
cap6000 6000 2176 123 146 -2.45138e+06 -2440703 3.17
harp2 2993 112 73 10 -7.38998e+07 -61325534 0.91

liu 1156 2178 0 0 ? none -
manna81 3321 6480 0 0 -13164 -13139 2.5

mas74 151 13 0 0 11801.2 14427.14 0.39
mas76 151 12 0 0 40005.1 43346.22 0.3
mkc 5325 3411 2 0 -563.846 -138.99 13.17

nsrand-ipx 6621 735 0 0 51200 265345.13 5.8
nw04 87482 36 36 0 16862 38818 16.33

opt1217 769 64 48 0 -16 -16 0.35
p2756 2756 755 0 0 3124 none -

In the last experiment we took some runs to see the performance of modified
Randomized Rounding. As mentioned earlier, the problems are taken from MI-
PLIB2003 library and the results are shown in Table 3. In this table the first five
clumns are the name of the problem, number of rows, number of columns, num-
ber of non-zero elements in the matrix of constraints, and number of continuous
variables in the problem, respectively. The column ”Objective” is the optimal
objective value of the problem. The column ”Feasible” is the feasible solution
that modified Randomized Rounding finds, and, finally the last column is the
time it takes for modified Randomized Rounding to find that feasible solution.
As one can see for most of the problems modified randomized rounding finds a
rather good feasible solution fast.



Randomized Rounding 15

Table 3: Results of runs of modified Randomized Rounding

Name Rows Cols Non-zero Con Objective Feasible Time

fiber 363 1298 2944 44 405935 8203065.17 0.62
glass4 396 322 1815 20 1.20E+009 none -
harp2 112 2993 5840 0 -7.39E+007 none -

liu 2178 1156 10626 67 ? none -
manna81 6480 3321 12960 0 -13164 -13126 3.53

markshare1 6 62 312 12 1 212 0.33
markshare2 7 74 434 14 1 274 0.51

mas74 13 151 1706 1 11801.2 14776.67 0.32
mas76 12 151 1640 1 40005.1 42218.89 0.52
misc07 212 260 8619 1 2810 none -

mkc 3411 5325 17038 2 -563.85 -182.44 3.67
modglob 291 422 968 324 2.07E+007 20966737.41 0.05
noswot 182 128 735 28 -41 -40 0.77
opt1217 64 769 1542 1 -16 -16 0.93
p2756 755 2756 8937 0 3124 none -
pk1 45 86 915 31 11 18 0.08

pp08aCUTS 246 240 839 176 7350 8500 0.1
pp08a 136 240 480 176 7350 none -

5 Conclusions

There are very few heuristics for constructing initial feasible solutions to mixed-
integer programs with general integer variables. We give an opportunistic heuris-
tic (fast but ’dumb’) and demonstrate its utility.

References

[1] A. Atamtürk. On the facets of the mixed–integer knapsack polyhedron. Mathe-
matical Programming, 98:145–175, 2003.

[2] D. Bertsimas and S. Vempela. Solving Convex Programs by Random Walks.
Jounal of the ACM, 51(4):540–556, 2004.

[3] E. Rothberg E. Danna and Claude C. Le Pape. Exploring relaxation induced
neighborhoods to improve MIP solutions. Math. Program., 102(1(A)):71–90, 2005.

[4] M. Fischetti and A. Lodi. Local Branching. Mathematical Programming, 98:23–47,
2003.

[5] M. Fischetti and A. Lodi. Local Branching. Mathematical Programming, 98:23–47,
2003.

[6] F. S. Hillier. Efficient heuristic procedures for integer linear programming with
an interior. Operations Research, 17(4):600–637, 1969.

[7] http://miplib.zib.de/miplib2003.php. .
[8] https://projects.coin or.org/Cbc. .
[9] http://www.ieor.berkeley.edu/ atamturk/data/mixed.integer.knapsack. .

[10] S. Elhedhli J. Naoum-Sawaya. Using analytic centers to find feasible solutions in
mixed integer programming. working paper, xx:1–24, 2009.



16 Namazifar, Lougee-Heimer, Miller, and Forrest

[11] A. Kalai and S. Vempela. Efficient Algorithms for Universal Portfolios. Journal
of Machine Learning Research, 3:423–440, 2002.

[12] L. Lovasz and M. Simonovits. Random Walks in a Convex Body and an Improved
Volume Algorithm. Random Structures and Algorithms, 4(4):359–412, 1993.

[13] A. Sinclair M. Jerrum and E. Vigoda. A Polynomial-Time Approximation Algo-
rithm for the Permanent of a Matrix with Nonnegative Entries. Random Struc-
tures and Algorithms, 4(4):359–412, 1993.

[14] R. Roundy R. Freund and M. Todd. Identifying the set of always-active constraints
in a system of linear inequalities by a single linear program. Working papers
from Massachusetts Institute of Technology (MIT), Sloan School of Management,
104:1674–1685, 1985.

[15] E. Rothberg. An Evolutionary Algorithm for Polishing Mixed Integer Program-
ming Solutions. INFORM Jounal of Computing, 19(4):534–541, 2007.


